
TCP/IP Standard Applications
Telnet - SSH - FTP - SMTP - HTTP

Virtual Terminal, Secure Shell, File Transfer, Email, WWW

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 2

Agenda

•  Telnet (Virtual Terminal)
•  SSH
•  FTP (File Transfer)
•  E-Mail and SMTP
• WWW and HTTP

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 3

What is Telnet?

•  Telnet is a standard method to communicate
with another Internet host

•  Telnet provides a standard interface for terminal
devices and terminal-oriented processes
through a network

•  using the Telnet protocol user on a local host
can remote-login and execute commands on
another distant host

•  Telnet employs a client-server model
–  a Telnet client "looks and feels" like a Terminal on a

distant server
–  even today Telnet provides a text-based user interface

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 4

Local and Remote Terminals

workstation
as remote terminal

with Telnet Client

Host
with Telnet Server

local terminal

traditional configuration

today's demand: remote login

network

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 5

About Telnet

•  Telnet was one of the first Internet applications
–  since the earliest demand was to connect terminals to

hosts across networks
•  Telnet is one of the most popular Internet

applications because
–  of its flexibility (checking E-Mails, etc.)
–  it does not waste much network resources
–  because Telnet clients are integrated in every UNIX

environment (and other operating systems)

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 6

Telnet Basics

•  Telnet is connection oriented and uses the TCP
protocol

•  clients connect to the "well-known" destination
port 23 on the server side

•  protocol specification: RFC 854
•  three main ideas:

– concept of Network Virtual Terminals (NVTs)
– principle of negotiated options
– a symmetric view of terminals and (server-)

processes

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 7

Virtual Terminals

•  a Telnet Client can emulate the behaviour of a
wide range of well-known real terminals

•  internally, each end of a Telnet connection leads
to a Network Virtual Terminal (NVT)

•  an NVT provides a standard, network-wide,
intermediate representation of a canonical
terminal
–  consisting of a display (printer) and a keyboard (line-

buffered mode) in half-duplex mode
–  Telnet communications rely upon the "language" of NVTs
–  each local device characteristics are mapped to the NVT

capabilities

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 8

Telnet Client - Server

local terminal syntax

workstation emulating
an arbitrary kind of
local terminal syntax

NVT transfer syntax

NVT transfer syntax

Telnet server-process
translates the NVT

character set into the
local character set and

vice versa

Telnet client

Telnet client

Terminal

Telnet Server

network

local
 terminal
 syntax

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 9

Half-Duplex Connection

•  a Telnet connection "itself" is running full-
duplex
–  e.g. both sides can send negotiation commands or signals

at the same time
•  but at the users point of view, NVTs only

communicate in a half-duplex way !
•  to reduce network costs and the number of server interrupts, a

Telnet-client accumulates NVT keyboard inputs in a buffer before
sending it (e.g. line buffered)

•  on the other side the Telnet-server wants to send all data to the
client's printer before the client continues

•  so a kind of token-principle has been specified: the GA-character
(Go Ahead) can be send to notify the other side that the current
sender has finished its transmission

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 10

Negotiating Options

•  in order to extend the rather poor capabilities of
a NVT, Telnet provides a means for option-
negotiating
–  using commands like DO, DON'T, WILL, WON'T
–  e.g. for full screen mode, specify terminal type, etc...

•  symmetric view: both the server and the client
may propose additional options to be used

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 11

Symmetric Telnet Model

Telnet
Client

TCP

Net Access

IP

NVT

Operating
System

 Telnet
 Server

TCP

Net Access

IP

NVT

Operating
System

negotiations

Host A Host B

full duplex

half duplex

characters

port 23 port x >1023
Control

Data

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 12

NVT's Character Set

•  NVT generally use the 8 bit data format
•  however, NVT's basic character set is the US

ASCII 7-bit code
•  so an NVT can handle the printable characters

with ASCII codes 32-126 plus a small set of
control characters:
–  NULL (NUL) - no operation
–  BELL (BEL) - produces an audible or visible signal
–  Back Space (BS) - moves the print head one character to the left margin
–  Horizontal Tab (HT) - moves the printer to the next horizontal tab stop
–  Line Feed (LF) - moves the printer to the next print line, keeping the same

horizontal position
–  Vertical Tab (VT) - moves the printer to the next vertical tab stop
–  Form Feed (FF) - moves the printer to the top of the next page
–  Carriage Return (CR) - moves the printer to the left margin

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 13

Internal Telnet Commands

•  for options negotiating and signalling purposes
Telnet applies special command characters

•  these commands have bit 8 set (code words
128-255)

•  Telnet commands are prefixed with a special
escape character: IAC - "Interpret As Command"
–  code word 255
–  IAC is doubled if it appears in the normal data stream

(only in the optional 8-bit mode - "IAC stuffing")

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 14

Internal Telnet Commands

•  all communication between client and server is
handled with internal commands

•  each command has 2 or 3 bytes length
–  first byte: IAC
–  second byte: command code
–  possible third byte: referenced option when negotiating

•  the chain of commands can be even longer in
case of sub-negotiating
–  indicated with the command code SB (Subnegotiation

Begin)
–  closed with the command code SE (Subnegotiation End)

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 15

Possible Internal Command Formats

Option-ID

PARAM

IAC Command
Code

SB

IAC Command
Code

IAC Option-ID IAC SE

Standart Formats

Reference option
 when negotiating

Chain of commands 1 Byte
(1 Character)

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 16

Internal Telnet Commands - Overview

SE 240 End of Subnegotiation

GA

NOP 241 No Operation

DM 242 Data Mark (part of the Synch function)

BRK 243 NVT character break

249 Go Ahead ("Token" for half duplex mode)

SB 250 Begin of Subnegotiation

WILL 251 Sender wants to enable an option

WON'T 252 Sender do not want to enable an option

DO 253 Sender asks Receiver to enable an option

DON'T 254 Sender asks Receiver to not enable an option

IAC 255 Interpret As Command

negotiation
commands

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 17

Command Examples for Negotiation

Client Server
IAC, DO, ECHO

Client Server
IAC, WILL, ECHO

Client Server
IAC, WON'T, ECHO

Client Server
IAC, WILL, ECHO

Client Server
IAC, DO, ECHO

either:

or:

Client Server
IAC, DON'T, ECHO

either:

or:

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 18

Important Telnet Options - Overview

0 Transmit Binary
1 Echo
3 Suppress Go Ahead
5 Status
6 Timing Mark
8 Output Line Width
9 Output Page Size

24 Terminal Type
35 X Display Location
39 Telnet Environment Option

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 19

Important Telnet Options (1)

•  Transmit Binary (Code 0)
–  toggles from 7-bit ASCII code to 8-bit binary code with IAC

stuffing

•  Echo (Code 1)
–  received data characters will be echoed back to the

sender
–  by default local echo (character on screen is echo of client

keyboard) is enabled
•  Suppress Go Ahead (Code 3)

–  toggles from the default half-duplex mode into full-duplex
•  Status (Code 5)

–  verify the current status of remote Telnet options

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 20

Important Telnet Options (2)

•  Timing Mark (Code 6)
–  causes the a time stamp to be inserted inside the data

stream (for synchronisation purposes in full-duplex mode)
•  Terminal Type (Code 24)

–  to signal some specific terminal type to be used
•  DEC VT-100, IBM 3270

•  Extended Options List (Code 255)
–  if there is a demand for more than 256 Telnet options, this

option can be used to negotiate the availability of an
extended option list

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 21

Important Telnet Options (3)

•  Telnet Environment Option (Code 39)
–  enables the server to use its client's environment variables

•  Output Line Width (Code 8)
•  Output Page Size (Code 9)
•  X Display Location (Code 35)

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 22

Basic Set of Standard Functions

IP 244 Interrupt Process

EL

AO 245 Abort Output
AYT 246 Are You There?
EC 247 Erase Character

248 Erase Line

•  to ease the compatibility of different
implementations
–  a set of standard functions have been specified (= most

important functions)

–  each of these commands initiates the processing of a
well defined control function

SYNCH ---- Synchronization

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 23

Standard Functions - Explanation (1)

•  IP - Interrupt Process
–  invokes a system function to suspend, interrupt, abort or

terminate the operation of the (remote) process
•  AO - Abort Output

–  forces the remote system to finish its output, even if there
is any outstanding data

•  AYT - Are You There
–  requires the remote system to send an optical (printable)

or acoustic ("beep") signal to indicate that this system is
still up and running

•  EC/EL - Erase Character/Line
–  this function is typically used to edit keyboard input

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 24

Standard Functions - Explanation (2)

•  SYNCH - Synchronize
–  processes in remote systems are sometimes hard to

control because some control signals might be buffered
anywhere between the sender and the receiver

•  e.g. caused by the networks flow control
–  the Telnet "Synch" mechanism consists of a TCP Urgent

notification coupled with the Telnet DM (Data Mark)
command

–  on receiving any data stream with the TCP-Urgent data bit
set, a server discards all buffered data except commands

–  the Telnet DM-command signals that the desired
commands have been already occurred and the server
can return with normal processing the data stream

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 25

Synchronised Commands

•  the Telnet SYNCH function is applied on the
most essential basic functions:
–  AYT, AO, IP and BRK

•  that is, these characters are send in TCP
segments with the Urgent data bit set, followed
by a Telnet DM command

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 26

Security Issues

•  Telnet-clients are able to connect to many
server-ports (if not closed for Telnet
connections)
–  port 25 (SMTP) can be used for faked E-Mails
–  port 6000 (X-Window) can be monitored to catch window-

contents, passwords, jammed for Denial of Service
(DoS), ... (if not protected using xhost or magic cookies)

–  port 80 (HTTP) can also be a target for DoS; recently, the
NT-webserver IIS could be easily crashed via port 135
(and others)

•  Telnet does not encrypt passwords -> sniffers !!!
–  so never give telnet users root privileges (some operating

systems disallow remote root-logins anyway)
–  use secure shell (SSH) for security reasons

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 27

Relevant RFCs

•  RFC 854 - Telnet Protocol Specification
•  RFC 855 - Telnet Option Specifications
•  RFC 856 - Telnet Binary Transmission
•  RFC 857 - Telnet Echo Option
•  RFC 858 - Telnet Suppress Go Ahead Option
•  RFC 859 - Telnet Status Option
•  RFC 860 - Telnet Timing Mark Option
•  RFC 861 - Telnet Extended Options - List Option
•  RFC 1184 - Telnet Linemode Option

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 28

Agenda

•  Telnet (Virtual Terminal)
•  SSH
•  FTP (File Transfer)
•  E-Mail and SMTP
• WWW and HTTP

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 29

SSH Basics

•  Secures connections over the Internet
•  Encrypting all transmitted confidential data

–  Passwords
–  Binary files
–  Administrative commands

•  Two versions of Secure Shell (not compatible)
–  Secure Shell Version 1(SSH1 or SSH)
–  Secure Shell Version 2 (SSH2 or SecSH)

•  De-facto standard
•  Client-server protocol

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 30

SSH Basics

•  Solve two most acute problems in the Internet
–  Secure remote terminal logins

•  ssh -l user-name machine-name
–  Secure remote command execution

•  ssh machine-name/path to exe-file

–  Secure file transfers
•  scp file user-name@machine-name

–  Port forwarding
•  ssh -L 3002:hostB:119 hostB

•  Tunnels TCP sessions over encrypted Secure
Shell connection
–  Secure the communication of other applications and

protocols without modifying the applications

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 31

Principle

E-Mail Security through SSH2 Tunneling

SSH2 Client
SSH2 Server Mail Server

Secure Connection

Insecure Connection

Encrypted SSH2 Tunnel

Internet

Mail
Program

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 32

Encryption

•  Support of the strongest available encryption
algorithms
–  3DES
–  CAST-128
–  Twofish
–  AES

•  Advanced-Encryption-
 Standard (US)
•  128-bit key!

Method SSH1 SSH2

DES X -

3DES X X

IDEA X -

Blowfish X X

Twofish - X

Arcfour - X

AES - X

Cast128-cbc - X

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 33

SSH (v1) Procedures 1

TCP connection to port 22

H … public-key RSA Host
(generated by ssh server setup)
S … public-key RSA Server
(generated by connection
start and changed periodically
for perfect forward secrecy)

Both sides start encryption of SSH connection
with 3DES with key K

OK

Client performs server authentication by decryption
of received message OK

fE(H,S, K)

client checks if H, S
already know in file
~User/.ssh/known_hosts;
if yes -> ok
if no -> ask user

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 34

SSH (v1) Procedures 2

fE(KA2, C)

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 35

SSH1 vs. SSH2

•  Two entirely different protocols
•  SSH1 uses server and host keys to authenticate
•  SSH2 only uses host keys
•  SSH2 encrypt different parts of the packet
•  SSH2 is a complete rewrite of the protocol
•  SSH2 is more secure
•  Where to get:

–  OpenSSH -> http://www.openssh.com/
•  ssh, scp, sftp, sshd, stfp-server

–  PuTTY -> http://www.chiark.greenend.org.uk/~sgtatham/putty/
•  Telnet and SSH client

–  SSH Tectia -> http://www.ssh.com/

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 36

Agenda

•  Telnet (Virtual Terminal)
•  SSH
•  FTP (File Transfer)
•  E-Mail and SMTP
• WWW and HTTP

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 37

File Transfer Protocol FTP (RFC 959)

•  the way information is stored depends on the
architecture of the underlying system
–  hardware- and software-architecture (HW - processor; SW

- operating system)
–  datatypes and coding styles
–  file organization and access methods

•  two approaches possible for exchanging files
between different systems
–  definition of virtual files and translation to real files
–  reduction: extract some few fundamental properties from

many individual properties

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 38

Virtual File Approach

•  all possible representations must be considered
•  translators from real to virtual filesystems and

vice versa must be implemented
–  complex and difficult to realize
–  advantages: operating systems working with virtual file-

stems can easily support a variety of real filesystems
•  examples

–  ISO FTAM protocol (layer 7)
•  FTAM (File Transfer, Access and Management) also allows to

manage a remote filesystem
–  Linux Kernel

•  using an internal virtual filesystem it was easy to implement
support for HPFS, NTFS, FAT, OS/2, System V, UFS, and other
filesystems

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 39

Reduction Approach

•  based upon common fundamental properties of
each filesystem
–  data types, file organization, file ownership and access

authority, symbolical names for file identification, I/O-
operations, etc.

–  only fundamental views and manipulation operations
•  easy to implement and powerful

–  no translation necessary between different systems
•  application itself is responsible for the appropriate data format

•  example: FTP

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 40

Difference: FTP - File Server OS

•  FTP: Sharing by File Transfer
–  files are copied and forwarded to the local system; the

original file remains unchanged

•  File Server OS: Online Sharing Systems
–  allows multiple users to share a file over a network
–  files from a fileserver can be accessed and manipulated

like local files
–  examples: Novell File Server, Sun NFS, IBM Lan Manager

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 41

FTP-Dimensions for Filetransfer

•  data-representation (dimension datatype):
–  ASCII 7-bit in 8-bit NVT to exchange text between

arbitrary systems
–  EBCDIC 8-bit for IBM to IBM transfer
–  IMAGE (8-bit binary) to exchange binary data between

similar (compatible) systems
•  file-organization (dimension filetype):

–  file structure (strings of bytes, end marked by EOF)
–  record structure (list of records, end of each marked by

EOR)
 EOF and EOR are represented by sequence of 2-bytes: hexFF
and hex01 (EOR) | hex02 (EOF) | hex03 (EOR+EOF) plus
bytestuffing if hexFF appears within the (source) data stream

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 42

FTP-Dimensions

•  transfer type (dimension transmission mode):
–  stream ... data is transmitted as continuous bit stream

without being modified; only EOF and EOR are
represented as an appropriate 2-byte sequence

–  block ... data is divided in uniquely distinguished blocks;
EOR marks end of block, EOF marks end of file

 block-mode allows applications to implement restart-
mechanisms (to be used in case of transmission errors)

–  compressed ... data is compressed-> sequences of same
characters are transmitted only once; additionally a
replication counter must be transmitted which tells the
receiver how often this sequence occurs

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 43

FTP-Principles 1

•  FTP uses client-server communication principle
•  client-server communication maintains 2 TCP

connections
–  control signals use the well known port 21
–  datastream is connected to the well known port 20 of the

server (except passive mode is requested)
•  using TCP means: FTP needs no additional error

recovery mechanisms to protect the data
•  file access protection is done via login-

procedure
–  login name
–  password

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 44

FTP-Principles 2

•  after connection establishment of the control
connection the client protocol interpreter (PI)
and the server PI communicate on the control
channel using the NVT format

•  PI is responsible for
–  translating the local syntax into the NVT syntax
–  issuing an appropriate action in the underlying OS

(e.g. DOS command DIR -> UNIX command LS)
•  control connection provides commands from the

client to the server and acknowledgements in the
other direction

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 45

FTP-Principles 3

•  if a command issues a data transfer
–  a client DTP (Data Transfer Process) and a server DTP

are started to maintain a separate TCP- connection
•  the separate TCP connection for date transfer

can be established in two ways
–  the client specifies via control connection a portnummer to

which the server setups a TCP connection from port 20
(active mode, default mode)

–  the client requests via control connection passive mode
and receives a new port number (> 1023) from the server
to which the client establishes the separate TCP
connection (passive mode; firewall-friendly)

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 46

FTP-Principles 4

•  all data transmission flows over this channel
•  at the end this connection is closed and the

DTPs terminate
•  this procedure is repeated for each data

transmission
–  half duplex !

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 47

FTP Internal Processes

TCP

Net Access

IP

PI

Operating
System

TCP

Net Access

IP

PI

Operating
System

Control

Host A Host B

port 21 port x >1023

FTP Client FTP Server

port 20

DTP DTP

port y >1023

Data

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 48

 Control Commands 1

•  commands of the control connection from the
client to the server (NVT-format):
Login Procedure:
–  USER provides username for login
–  PASS provides password of the user;

 NOTE: transmitted in plain text !!!
Directory Navigation/Creation:
–  LIST list the directory content
–  CWD change the directory
–  CDUP change to the upper directory level
–  MKD create directory
–  RMD remove directory

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 49

 Control Commands 2

FTP Service :
–  RETR load file
–  STOR send file
–  DELE delete file
–  RNFR rename from (changing filenames)
–  RNTO rename to (changing filenames)
–  DECE deletes files on the server
–  APPE append to data to a file
–  ALLO allocate memory for files on the server
–  NOOP no operation; issues OK message from

 server
–  ABOR signals server to abort previous commands

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 50

–  REIN re-initialization; client DTP is terminated,
 connection to the server is still remaining

–  QUIT Logout

Transfer Parameter:

–  MODE determine transmission mode
–  STRU determine file structure
–  STAT show the connection state
–  TYPE specification of a specific data format

 (binary, text ASCII/EBCDIC)
–  PORT tell the socket for the data connection

 (forked server: only the initial
 announcement connection uses the well
 known port 20)

–  PASV …. request passive mode

 Control Commands 3

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 51

•  all commands contain the necessary arguments
–  username, password
–  socket-ID, port-id
–  filename, directory
–  datatype:

•  ASCII, EBCDIC, Image
–  file structure:

•  file or record
–  transmission mode:

•  stream, block or compressed
•  and are completed with CR and LF

 Control Commands 4

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 52

Acknowledge Messages

•  acknowledge types of the control connection
from the server to the client (NVT-format):
–  220, service ready, CR, LF
–  331, user name OK, need password, CR, LF
–  230, user logged in, proceed, CR, LF
–  200, command OK, CR, LF
–  150, file status OK, opening data connection, CR, LF
–  226, closing data connection, CR, LF
–  etc..…

•  acknowledges are printed without further
processing
–  text messages for the user
–  numbers allow easy integration in programs

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 53

Acknowledge Coding

•  <1bc> ... premature positive-acknowledge
•  <2bc> ... completion-positive-acknowledge
•  <3bc> ... meantime positive-acknowledge
•  <4bc> ... transient negative-acknowledge
•  <5bc> ... permanent negative-acknowledge
•  <a0c> ... concerns syntax
•  <a1c> ... concerns commands questioning information
•  <a2c> ... concerns state of connection
•  <a3c> ... concerns commands for identification
•  <a5c> ... concerns file system commands
•  <ab_> ... detailed acknowledge information

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 54

Operation Mode - Classic

•  Firewall problems
–  Blocks all incoming connections

•  Old Mode

FTP Server

FTP Client
Firewall

Signaling Connection
(from Port X to Port 21)

21

Y 20

X

Data Connection
(from Port 20 to Port Y)

Client: Port Y ->
Server: <- OK

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 55

FTP Internal Processes (Passive Mode)

TCP

Net Access

IP

PI

Operating
System

TCP

Net Access

IP

PI

Operating
System

Control

Host A Host B

port 21 port x >1023

FTP Client FTP Server

port z > 1023

DTP DTP

port y >1023

Data

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 56

Operation Mode - Passive

•  Only outbound connections
–  No Firewall problems
–  see RFC 1123, 1579, 1635

•  Best mode in secure environment

FTP Server

FTP Client

Firewall

21

Y Z

X

Signaling Connection
(from Port X to Port 21)

Data Connection
(from Port Y to Port Z)

Client: PASV ->
Server: <-Z

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 57

User Interface

• many FTP client software support the following
commands through the user interface
–  open open a FTP connection to a server
–  user announce a new user
–  dir, ls show the directory content
–  pwd show current directory
–  cd change current directory
–  lcd change local directory !
–  binary switch into the image mode
–  text switch into the text-mode (ASCII/EBCDIC)

 (default?)

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 58

Further User Commands

–  delete delete a file on the remote system
–  get receive a file from the server
–  put send a file to the server
–  rename rename a file
–  mget receive multiple files from the server
–  mput send multiple files to the server
–  mkdir create a directory
–  rmdir remove a directory
–  exit/quit ... close the connection to the server
–  status show the connection state
–  ? give help

NOTE: all commands relate to the remote filesystem (filesystem of the
server); some commands have local meaning if preceded by a "l"

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 59

Agenda

•  Telnet (Virtual Terminal)
•  SSH
•  FTP (File Transfer)
•  E-Mail and SMTP
• WWW and HTTP

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 60

What is E-Mail ?

•  E-Mail (or "email") is the most widely used
Internet application
–  Note: email was TCP/IP's key to success: developers

wrote RFCs and exchange them quickly via email
•  user can communicate with each other

–  on the same machine or across a network
•  using a mailbox principle

–  a sender does not require the receiver to be online nor the
recipient to be present

–  a user's mailbox can be maintained anywhere in the
Internet on a server

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 61

History

•  Electronic Mail has been invented in 1972 by
Ray Tomlinson (Note TCP: 1974)

•  initially started as a simple service that copied a
file from one machine to another and appended
it to the recipient's "mailbox" file

•  problems to cope:
–  several exchange techniques
–  several machine-dependent character sets
–  several mail content formats
–  demand for multi-media extensions
–  demand for encryption

•  1982: standardized mail format (RFC 822)

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 62

The "Electronic Mail System" (EMS)

•  there are several implementations of an EMS
•  though "Internet-Mail" (using SMTP) is the most

popular; standardized by IETF
–  rather obsolete: Unix to Unix Copy (UUCP)

•  every user owns his own mailbox where he
receives and stores messages from other users

•  every user can be uniquely identified by an
email-address

•  outbound mails are intermediately stored using
spooling-ressources
–  in case of non-standalone EMS

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 63

General EMS-Model Standalone

Mailbox Area

User A

User B

Terminal
Handler

Mail
Native

Handler

File

Handler

Create Mail
Send Mail
Notify User
View Received Mail
Delete Mail

 Native mail format
Mail Server

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 64

General EMS-Model Network

NET

Mailbox Area

Terminal
Handler

Comm.
Handler

Mail
Native

Handler

Mail
Gateway
Spooling

File

Handler

internal mail-bus global mail format,
spooling of emails
to be transmitted

User A

User B

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 65

EMS-Model using SMTP

Internet

Mailbox Area

Term.
Hand.

IP

Mail
Native

Handler
SMTP

Instance
(RFC 821)

File

Handler

TCP

standardized
mail format

RFC 822

LAN
Mail

Access

User A

User B

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 66

Basic Components

• Mail User Agent (MUA)
–  program to read and write emails

•  sender spool-file
–  each message to be send is placed (appended) in a

designated spool-file by the MUA
• Mail Transfer Agent (MTA)

–  program which reads emails from a spool-file in a
consuming way

–  forwards these emails into the mailboxes of the recipients
(e.g. using SMTP)

• mailbox
–  designated file owned by a receiver
–  delivered mails should be appended here

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 67

Basic Components

MTA

spoolfile

MUA

mailbox
fetch

received
emails
(e.g.

POP3,
IMAP4)

collect
new

emails

consume
and

deliver
new

emails

put newly
created

emails in
the

spoolfile
using
SMTP

MTA

spoolfile

MUA

mailbox

delivery using SMTP

User A

User B

read
directly write

directly

MUA and MTA on different machines MUA and MTA on the same machine

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 68

Basic Protocols

•  transport mechanisms to send mails from the
sender's spooling memory to the receiver's
mailbox:
–  SMTP - Simple Mail Transfer Protocol (widely used)
–  X.400 (more sophisticated)

•  fetch mechanisms to move (copy) mails from a
remote mailbox to a local host
–  POP - Post Office Protocol
–  IMAP - Internet Message Access Protocol

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 69

Basic Protocols

• multimedia attachment formats:
–  MIME - Multipurpose Internet Mail Extensions

•  encryption standards:
–  PGP - Pretty Good Privacy

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 70

Email Addresses

•  every mailbox can uniquely identified by an
email address

•  email addresses consists of character strings
conforming the following format:

user@domain
 user: identifies the user or his/her mailbox

 of a domain
 domain:identifies some organization or a
 host-machine providing a

 mail-exchange service (DNS name)
•  example: lindner@ict.tuwien.ac.at

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 71

Mail Routing in the Internet (DNS based)

• mail routing service of a mail server can be
announced with the help of DNS
–  DNS servers allow to identify a Mailbox Exchanger (MX)

which is registered for a domain
–  using MX-records in the DNS database which specify the

name(s) of such machine
•  each MX record is assigned a preference value (positive integer)
•  if several MX server exist for one domain, the MTA will try to

transfer the message to the server with the lowest preference
value

•  a MTA must not transfer mails to MX servers with a higher
preference value than its own (safe way of avoiding mail loops)

–  DNS resolves for any given domain-name the machine's
associated IP-address

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 72

Message Components (RFC 822, 2822) 1

•  Envelope or Header
–  contains any information necessary for transmission and

delivery
–  starts with a "From" expression in the first line
–  necessary for MUA's mail handling

•  not particular to any transport mechanism (though MTA’s may use
some information of the header)

–  contains well defined message information
•  about sender, receiver, intermediate stations, date and time,

content-type, return-path (for error messages back to the sender),
subject of the message, etc...

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 73

Message Components (RFC 822, 2822) 2

•  Body
–  separated from the header by an empty line
–  contains the user's message
–  maximal 1000 characters

•  Signature
–  separated from the body by two dashes "--"
–  contains personal information, jokes, PGP-keys or

fingerprints, etc.

•  Very important:
–  Header and Body must be represented with US-ASCII

characters only to be RFC822 conform

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 74

Header Fields (1)

•  From:
–  sender's email address and (frequently) her "real name"
–  many formats are used here

•  To:
–  recipients email address

•  Subject:
–  what the message is about (to the sender's opinion)

•  Date:
–  the date the mail was sent

•  Reply-To:
–  hint for the recipient which email address should be used

for a reply

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 75

Header Fields (2)

•  Organization:
–  hint which organization (company, etc) the user belongs to

• Message-ID:
–  a string, generated by the initial MTA
–  identifies a message uniquely

•  Received:
–  every site (including sender and recipient) which

processes this email inserts such a field in the header
–  several information can be stated here: site name,

message-id, time, IP-address, software name
•  X-anything:

–  used to implement additional features
–  no MUA or MTA should complain about this lines

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 76

Simple Mail Transfer Protocol

•  RFC 821, 2821
•  client-server principle

–  SMTP relies on TCP, well-known port number 25

•  end-to-end communication
–  sender (SMTP client) talks directly to the receiver

(SMTP server)
–  local deleting condition: mail must successfully arrive at

the receiver

•  commands and message-contents are
transferred in ASCII format
–  printable 7-bit US-ASCII (=character values 33-126) plus

CR and LF

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 77

ASCII-Code

Null DLE SP 0 @ P \ p
SOH DC1 ! 1 A Q a q
STX DC2 “ 2 B R b r
ETX DC3 # 3 C S c s
EOT DC4 $ 4 D T d t
ENQ NAK % 5 E U e u
ACK SYN & 6 F V f v
BEL ETB ` 7 G W g w
BS CAN (8 H X h x
HT EM) 9 I Y i y
LF SUB * : J Z j z
VT ESC + ; K [k {
FF FS , < L \ l I
CR GS - = M] m }
SO RS . > N ^ n ~
SI US / ? O _ o DEL

0 0 0 0

7
6
5

Bit
Positions

0
0
0

0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

0
0
1

0
1
0

0
1
1

1
0
0

1
0
1

1
1
0

1
1
1

American Standard Code for Information Interchange

Printable Character
Transmission Control

Information Separator
Format Control

Others

4 3 2 1

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 78

Simple Mail Transfer Protocol - SMTP

• multiple receivers:
–  client must establish a separate TCP connection to every

receiver's server-process
•  generally, a client background process tries to

empty the whole spooling area
• mails that cannot be delivered keep waiting in

the spooling area
–  client process will repeat its delivery attempts periodically
–  the user will be noticed about each delivery failure
–  after several repetitions the mail will be removed from the

spooling area

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 79

SMTP-Model

TMT-Mail
Spooling

Area

RCV-Mail
Mailbox

Area

Mail
Handler

+
User

Interface

User

SMTP-
Client

Background
Process

SMTP-
Server

Process on
Demand

TCP
connection

for
TMT-Mail

TCP
connection

for
RCV-Mail

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 80

SMTP Model

SMTP
Client

TCP

Net Access

IP

Spool

Area

Operating
System

 SMTP
 Server

TCP

Net Access

IP

RCV

Mailbox

Operating
System

Host A Host B

port 25 port x >1023
Control (NVT)

Data

Email

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 81

SMTP - Commands and Replies

HELO Authentication
MAIL Sender‘s Name
RCPT Receiver‘s Name
DATA Beginning transmission
SEND Send directly
SOML „Send or Mail“
RSET Reset all Buffers
QUIT Finnish session

Client à Server
Command

220 Service ready
250 Request mail action ok
354 Start mail input
421 Service not available
450 Request action aborted
500 Syntax Error
550 Requested action not taken
551 User not local
554 Transaction failed

Server à Client
Reply

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 82

SMTP-Commands: Client -> Server

–  HELO........for client authentication
–  MAIL.........specifies sender's name (FROM-line)

–  RCPT........specifies receiver's name; can be repeated if there
 are several recipients on the receiver's system

–  DATA........indicates beginning of mail transmission

–  SEND....... this email should be send directly to the
 terminal of the specified user

–  SOML....... first act like SEND; if the user's terminal cannot be
 reached use that user's mailbox ("Send Or MaiL") *

–  RSET........resets all buffers, TCP connection remains open
 though

–  QUIT........finishes this client-server session

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 83

SMTP-Replies: Server -> Client

–  220 <domain> service ready
–  250 <domain> requested mail action okay, completed
–  354 start mail input, end with CR,LF,.,CR,LF
–  421 <domain> service not available, closing trans.cha.
–  450 request action aborted, local error in processing
–  500 syntax error, command unrecognized
–  550 requested action not taken (mailbox not found)
–  551 user not local
–  554 transaction failed

•  error numbers are very similar like those of FTP
•  both commands and replies are completed with

a CR, LF sequence

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 84

SMTP Example (1)

C: (opens TCP connection to port 25 of the server)
S: 220 tuwien.edu Simple Mail Transfer Service ready
C: HELO tugraz.edu
S: 250 OK
C: MAIL FROM: josef@tugraz.edu
S: 250 OK
C: RCPT TO:hans@tuwien.edu
S: 550 no such user there
C: RCPT TO:manfred@tuwien.edu
S: 250 OK
C: DATA
S: 354 start mail input, end with CR LF . CR LF

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 85

SMTP Example (2)

C: sends message im RFC 822 Format

C: CR , LF , . , CR , LF
S: 250 OK
C: QUIT
S: 221 tuwien.edu closing transmission channel

Date: Sun 17 April 94 09:10:22
From: Josef Maier <josef@tugraz.edu>
Subject: Greetings
To: manfred@tuwien.edu

Did this email reach you?
Josef

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 86

SMTP Example (3)

Return-Path: josef@tugraz.edu
Posted-Date: Sun 17 April 94 09:10:22 PDT
Received-Date: Sun 17 April 94 09:11:43 PDT
Received: from tugraz.edu by tuwien.edu

id AA07832; Sun 17 April 94 09:11:43 PDT
Date: Sun 17 April 94 09:10:22 PDT
From: Josef Maier <josef@tugraz.edu>
Subject: Greetings
To: manfred@tuwien.edu
(additionally, here may appear some Logging Information
 caused by SMTP processes having forwarded this mail)

Did this email reach you?
Josef

message
conforming to
the RFC 822
format, seen at
the receiver

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 87

Post Office Protocol (POP)

•  very often a user reads and writes his emails on
a local PC but has his mailbox on a server
machine
–  running a SMTP server process for receiving email

(probably running also a SMTP client process for sending email)

–  is permanently connected with the Internet
•  POP 3 lets a user fetch his emails from a remote

mailbox (client-server principle)
–  the machine with the mailbox (SMTP-server) runs also a

POP3 server process
–  the POP3 client on the user's workstation is able to load

and delete emails from that server and also to save them
on the local disk

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 88

POP3 Principles

•  POP3 relies on TCP
–  well-known port number 110
–  again commands and error-/state-messages are

exchanged using ASCII characters
–  communication procedure is similar to SMTP

•  Some examples of "LAN Mail Access Modules
and/or Native Mail Systems"

•  Pegasus Mail (DOS/Windows)
•  Eudora
•  Groupwise (Novel, IPX based)
•  MS Exchange
•  MS Outlook
•  Lotus Notes

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 89

POP3 Commands 1

–  USER name … user name for authentication
•  attention: cleartext

–  PASS password … password for authentication
•  attention: cleartext

–  STAT … to get the number of messages and total size of
the messages

–  LIST [msg] … if a message number is specified, the size
of this mail is listed (if it exists), if not all messages will be
listed with the message sizes

–  RETR msg .. sends the whole message to the client
–  DELE msg … deletes the specified message

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 90

POP3 Commands 2

–  NOOP … the server does not do anything, just sends a

positive response.
–  RSET … this command cancels previous delete requests
–  QUIT … if entered in the authorization state, it merely

ends the TCP connection; if entered in the transaction
state, it first updates the mailbox (deletes any messages
requested previously) and then ends the TCP connection

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 91

Internet Message Access Protocol (IMAP4)

•  RFC 3501
•  client-server principle
•  relies on TCP, well-known port 143
•  IMAP4 is similar to POP3 but more sophisticated

–  allows a client to access and manipulate emails
and mailboxes on a server

–  includes operations for creating, deleting, and renaming
mailboxes

–  commands for selective fetching of message attributes
•  ALL
•  BODY
•  BODY<section> (get single pages of a "multipart message"),

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 92

IMAP4

–  commands for selective fetching of message attributes
(cont.)

•  BODYSTRUCTURE (get MIME-1 body structure of a message),
ENVELOPE

•  FLAGS (get only the flags that are set for this message)
–  \Seen … Message has been read
–  \Answered … Message has been answered
–  \Flagged … Message is marked for special attention.
–  \Deleted … Message is deleted for later permanent removal.
–  \Draft … Message has been completed.
–  \Recent … Message has arrived recently and this is the first session

after its arrival, this flag cannot be changed by the client.
•  FULL
•  RFC822 (get message in RFC822 format)
•  UID (get the unique identifier for this message)

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 93

IMAP4

–  search-command
•  searches a mailbox for messages that match a given criteria

(search keys)

–  examine-command:
•  enables read-only mailboxes

–  maintains several flags for each message
•  SEEN, ANSWERED, DRAFT, DELETED, FLAGGED

•  RFC 1733
–  specifies „Distributed Electronic Mail Models in IMAP4“

•  offline use model
•  online use model
•  disconnected use model

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 94

SMTP and Binary Data Sources

•  RFC 822 format
–  allows only us-ascii characters in the message body

•  For including binary data like pictures, images,
executable files in an RFC 822 conform email
–  they first must be prepared for an ASCII-transmission

•  conversion into 7-bit-Bytes represented by printable ASCII
characters

•  several ad hoc methods were used before MIME
–  UUENCODE and UUDECODE

•  Unix-to-Unix

–  pure hexadecimal representation
–  Andrew Toolkit Representation (ATK)
–  many others

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 95

Multipurpose Internet Mail Extensions

• MIME is a mechanism
–  for specifying and describing the format of message

bodies (content-type) in a standardized way
–  but leaves message body as ASCII text

•  using MIME now emails can contain
–  images
–  audio-content
–  videos
–  HTML pages
–  application specific data

•  necessary
–  MUA can identify and support associated content-type

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 96

Multipurpose Internet Mail Extensions

• MIME is realised using
–  MIME-Version header field
–  Content-Type header field

•  type and subtypes of data in the body
•  this describes how the object within the body is to be interpreted
•  the default value is text/plain; charset=us-ascii,

–  Content-Transfer-Encoding header field
•  this describes how the object within the body was encoded so that

it could be included in he message in a mail-safe form (us-ascii-
code)

–  Content-Description header field (optional)
•  for additional plain-text data description

–  Content-ID header field
•  a world-unique identifier for the content of this part of the message

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 97

7 Standard Content-Types

•  1) text
–  plain (unformatted text) charset=us-ascii

•  7 bit (position 0 - 127 in the code table)
–  plain (unformatted text) charset= iso-8859-x (x = 1 - 9)

•  us-ascii plus national characters (position 128 - 255 in the code
table)

–  html and enriched
•  2) image

–  jpeg, gif
•  3) audio
•  4) video

–  mpeg

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 98

7 Standard Content-Types (cont.)

•  5) application
–  postscript
–  octet stream

•  6) multipart
–  mixed:

•  different body parts sequentially presented to the receiver

–  parallel:
•  same as mixed but no order how to presented the different parts to

the receiver

–  alternative:
•  different body parts are alternatives of the same information
•  can be presented depending on capabilities of the receiver
•  e.g. email as text/plain or text/html

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 99

7 Standard Content-Types (cont.)

•  7) message
–  the body is an encapsulated message or part of one
–  rfc822

•  encapsulated message is RFC822 conform

–  partial
•  large mail fragmented in smaller pieces

–  external-body
•  pointer to a object existing elsewhere accessible via ftp, tftp, local

file, mail-server

•  private types not falling into categories above
–  starts with a type/subtype X-

•  e.g. X-Mailer (MS Outlook, Novell GroupWise, etc.)
•  e.g. X-Priority (Normal, High, Low)

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 100

5 Standard Content-Transfer-Encodings

•  1) 7-bit encoding
–  body contains strict us-ascii with maximal length of 1000

characters
•  2) 8-bit encoding

–  possible SMTP agents support the SMTP service
extension for 8-bit MIME transport

•  EHLO instead of HELO

–  still maximal length of 1000 characters

•  3) binary encoding
–  binary with length greater than 1000 characters
–  currently only usable for type=message subtype=external-

body

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 101

5 Standard Content-Transfer-Encodings

•  4) quoted-printable encoding
•  real encoding

–  leaves text files largely readable in their encoded form
–  it represents non-mail safe characters by the hexadecimal

representation of their ascii-characters
–  non-text characters are replaced by three byte sequence

•  5) Base64 encoding
•  real encoding

–  for binary data
–  three 8-bit input words -> grouped to 24 bits
–  24 bits -> grouped to four 6-bit words (bbbbbb)
–  each of it padded to 8-bit (00bbbbbb) word
–  8-bit word converted with Base64-table to be mail-safe

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 102

RFCs

•  Mail: RFC 822 (obsolete), RFC 2822
•  SMTP: RFC 821 (obsolete), RFC 2821
•  POP2: RFC 937
•  POP3: RFC 1081, RFC 1225, RFC 1460, RFC 1725,

 RFC 1939
•  POP3 Authentication: RFC 1734
•  APOP: RFC 1460, RFC 1725, RFC 1939
•  RPOP: RFC 1081, RFC 1225
•  IMAP2, IMAP2BIS: RFC 1176, RFC 1732
•  IMAP4: RFC 1730, RFC 1731, RFC 1732, RFC 2060,

 RFC 2061, RFC 3501
•  MIME: RFC 2045, 2046, 2047, 2048, 2049

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 103

Agenda

•  Telnet (Virtual Terminal)
•  SSH
•  FTP (File Transfer)
•  E-Mail and SMTP
• WWW and HTTP

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 104

WWW Principles 1

•  Information stored on Web-servers
–  Documents in HTML format

•  Hypertext Markup Language
–  HTML is a text description language

•  HTML itself is exactly defined by the usage of Standard
Generalized Markup Language (SGML)

•  Several HTML versions today

–  SGML is a system for defining structured document types
and markup languages to represent instances of those
document types

•  HTML is an application of SGML
•  HTML Document Type Definition (DTD) of a document is a formal

definition of the HTML syntax in terms of SGML used within this
document

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 105

WWW Principles 2

•  HTML is a semantic markup language
–  Within in the text specific “commands” (Tags) are included

which describes the logical structure of the given text
–  Technically spoken a HTML document consists of

elements (containers), which are bracketed by begin- and
end-tags

•  <h[1]>text-lawa1</h[1]> …. for headline
•  <p>text-lawa2</p> ……….. for paragraph
•  <ul type=„bullettype">

listentry1
listentry2
 for lists with bullets

•  bold
•  <i>italic</i>

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 106

WWW Principles 3

• Most important element is the link which makes
the text “hyper”
–  text-to-link
–  URL … Uniform Resource Locator -> unique identifier of a

given resource in the Internet
•  http://www.ict.tuwien.ac.at/skripten/datenkomm/index.html

•  Tags are device independent
–  Will be interpreted at the given output system (GUI)
–  GUI … Graphical User Interface

• WYSIWYM instead of WYSIWYG
–  What You See Is What You Meant (Get)
–  note: that was the original approach

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 107

WWW Principles 4

•  Concept of hypertext
–  Information (text documents) is structured in an

hierarchical way. Retrieval of text documents will follow
this hierarchy.

–  References (“links”) within an document allow access to
other documents located at a different level of hierarchy

–  Allows a new way of navigating within text documents
–  Allows links to documents residing on other machines
–  Later expanded to hypermedia

•  Including graphics, audio and video

•  Hypertext and GUI (Browser)
–  The base for the success of the World-Wide-Web

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 108

WWW Principles 5

• Web Browser
–  Can download and present HTML documents to the user
–  E.g. NCSA Mosaic, Netscape Navigator, Microsoft Internet

Explorer, Opera
• Web Browser use HTML Interpreter for the

presentation of documents
• Web Browser use HTTP protocol for the

download of documents
–  Hypertext Transfer Protocol
–  Client - Server based

•  Browser as client, WEB Server - as server

–  Server accessible via well-known TCP port 80

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 109

 HTTP - WWW Model

TCP

Net Access

IP

HTTP Client

Operating
System

TCP

Net Access

IP

HTTP Server

Operating
System

Host A Host B

port 80 port x >1023 Request

Response

WEB Browser
interpreting of

HTML documents

WEB Server
storing of HTML

documents

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 110

WWW Principles 6

• Web Browsing
–  Usage of cache techniques to reduce network load and

improve performance
•  Browser Cache
•  Proxy Server as caching system
•  Document attributes for decision what is newer or must be

refreshed
–  Time and Date
–  Meta Information http-equiv “expires”

–  Good for static Web content
–  More complicated for dynamic Web content

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 111

WWW Principles 7

GUI

Driver HTTP Client

FTP Client

Mail Client

News Client

Scheduler

T

R

A

N

S

P

O

R

T
Telnet Client

HTML

Interpreter

optional

other

Interpreter

Structure of a typical
WEB Browser

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 112

Introduction to HTML Tutorial

•  SELFHTML by Stefan Münz
•  Excellent InfoBase about HTML
•  Portal:

–  http://selfaktuell.teamone.de/
–  http://selfhtml.teamone.de/
–  http://aktuell.de.selfhtml.org/

•  Download of selfhtml80.zip (7 MB) allows you to
install tutorial on your PC

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 113

HTTP Principles

•  Hypertext Transfer Protocol
–  First Version 1.0 (RFC 1945)
–  Current Version 1.1 (RFC 2616, 2817)

•  Base for transport of WWW documents
–  Between client (Browser) and server (Web-Server)

•  On top of TCP
–  Hence connection-oriented
–  Well-know server port 80

•  Stateless
–  Client opens a TCP connection, requests a document,

server responds with document, client closes TCP
connection (remedy ->cookies)

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 114

HTTP Characteristics

•  Application-level protocol
–  With the lightness and speed necessary for distributed,

collaborative, hypermedia information systems
•  Object-oriented protocol

–  Methods are applied on objects (sequentially)
•  HTTP messages consist of

–  Header
–  Body

•  HTTP allows usage of a set of methods
–  Methods specify the purpose of a request
–  Methods are applied on URLs included in the header

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 115

HTTP Header and Body

•  Header
–  contains the URL, method, and parameters
–  HTTP v1.0 methods: GET, HEAD, POST

•  Body
–  Contains user data described by a MIME header

•  MIME = "Multipurpose Internet Mail Extensions"
•  Also used by Internet Mail

–  User data can be
•  HTML information (= a web page)
•  Graphics, videos, sound-data, ...

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 116

HTTP Messages

–  A client establishes a connection with a server and sends
a request to the server containing

•  a request method
•  URL
•  protocol version
•  MIME-encoded data (optionally)

–  The server's response contains
•  a status line

–  containing messages protocol version
–  and a success or error code

•  MIME-encoded data
–  Server information (e.g. expiration time for cache)
–  entity metainformation
–  and possible body content

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 117

HTTP v1.0 Methods

•  GET!
–  This method allows the client to retrieve the data which

was determined by the request URL."
•  HEAD!

–  This method allows the client to retrieve meta-information
about the entity which does not require to transfer the
entity body"

•  Check if document was changed since last retrieval and hence to
be refreshed"

•  POST!
–  This method allows the client to store documents on the

server. The post function may be supported by the server."

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 118

HTTP v1.1 Methods

•  PUT!
–  This method is similar to the post method with one

important difference which is the URL in post request
identifies the resource that will handle enclosed entity
whereas with put request the URL identifies the enclosed
entity itself."

•  DELETE!
–  This methods requests that the server delete the source

determined by the request URL."
•  TRACE!

–  Trace method allows the client to see how the message
was retrieved at the other side for testing and diagnostic
purposes (remote application-layer loopback)

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 119

HTTP Request Methods and CGI data

•  HEAD or GET request
–  Only headers, no body
–  Form data for CGI is encoded in HTTP_QUERY_STRING

•  CGI script receives the environment variable QUERY_STRING
which contains the whole information

•  POST request
–  Header and body
–  Body contains user data (also form data)

•  Other differences
–  HEAD request does not expect body in the response

message
–  GET and POST accept responses with or without body

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 120

HTTP Communications (1)

User Agent
(Browser)

HTTP
Server

User Agent
(Browser)

HTTP
Server

GET /welcome.html HTTP/1.1
Host: some.where.ac.at:8888
User-Agent: Mozilla/5.0 (X11; U; Linux 2.4.2 i686; en-US; m18)

 Gecko/20001126
Accept: image/gif, image/jpeg, appliaction/vnd.ms-excel
Accept-Language: en-us
Accept-Encoding: gzip,deflate,compress,identity
Keep-Alive: 300
Connection: keep-alive

HTTP/1.1 200 OK
Date: Tue, 19 Jun 2001 21:02:30 GMT
Server: Apache/1.3.6 (Unix) PHP/3.0.15
Content-Location: welcome.html
Cache-Control: max-age=600
Expires: Tue, 19 Jun 2001 21:12:30 GMT
Last-Modified: Mon, 18 Jun 2001 22:57:24
GMT
Content-Length: 18843
Keep-Alive: timeout=15
Connection: Keep-Alive
Content-Type: text/html;
 charset=us-ascii

<!DOCTYPE html PUBLIC..............

1.) Webpage
request

2.) Webpage
delivery

TCP Connection
#1

TCP Connection
#1

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 121

HTTP Communications (2)

User Agent
(Browser)

HTTP
Server

GET /Icons/right HTTP/1.1
Host: some.where.ac.at:8888
User-Agent: Mozilla/5.0 (X11; U; Linux 2.4.2 i686; en-US; m18)
 Gecko/20001126
Accept: image/gif, image/jpeg, appliaction/vnd.ms-excel
Accept-Language: en
Accept-Encoding: gzip,deflate,compress,identity
Keep-Alive: 300
Connection: keep-alive

3.) Request for
 contained objects
 (icons,...)

HTTP/1.1 200 OK
Date: Tue, 19 Jun 2001 21:02:34 GMT
Server: Apache/1.3.6 (Unix) PHP/3.0.15
Content-Location: right.png
Cache-Control: max-age=2592000
Expires: Thu, 19 Jul 2001 21:02:34 GMT
Last-Modified: Thu, 24 Aug 2000 20:38:01 GMT
Content-Length: 119
Keep-Alive: timeout=15
Connection: Keep-Alive
Content-Type: image/png; qs=0.7

User Agent
(Browser)

HTTP
Server

4.) Delivery of
 first object...

TCP Connection
#2

TCP Connection
#2

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 122

HTTP Communications (3)

•  Current HTTP communications requires
–  That the connection is established by the client prior to

each request
–  And closed by the server after sending the response

•  If a webpage consists of several components
–  Every component is downloaded by a separate TCP

connection even if the component resides on the same
machine !!!!

–  In HTTP v.1.1 concept of persistent connections
•  Objects of same type are retrieved via single TCP connection

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 123

HTTP 1.1 (RFC 2616)

•  HTTP/1.1 was developed
–  to overcome version 1.0 problems

•  HTTP/1.0 does not sufficiently take into consideration the effects
of hierarchical proxies, caching, the need for persistent
connections, and virtual hosts

•  GET, HEAD or POST method only
•  Basic Authentication (Base64 coding of user-id, passw.)

–  to make HTTP a good Internet citizen
•  in HTTP/1.1, a persistent connection may be used for one or more

request/response exchanges

–  to increase functionality
•  GET, HEAD, POST, PUT, DELETE, TRACE methods
•  caching control support to improve overall performance

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 124

HTTP 1.1 Associated Documents

•  RFC 2617 Basic and Digest Authentication
–  Eliminates clear-text password of basic authentication
–  Uses cryptographic hashes (MD5)
–  Still the problem remains how to distribute a common

secret safely between agent and server
•  RFC 2964, 2965 State Management Mechanism

–  Specifies a way to create a stateful session with HTTP
requests and responses

–  Based on two new headers
•  Cookie and Set-Cookie which carry state information between

participating origin servers and user agents

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 125

Cookies

•  Originally, developed by Netscape Corporation
•  To circumvent the stateless nature of HTTP

–  HTTP servers respond to each client request without
relating that request to previous or subsequent requests

–  Difficult to create services such as virtual shopping carts
•  "Cookies" introduce session information
•  Two additional HTTP headers

–  Set-Cookie
–  Cookie

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 126

What is a Cookie?

•  A Cookie
–  Small piece of information (a string)
–  Basically, a special HTTP header (sent by the server)
–  Returned by the browser for each reconnection

•  String contains up to five attributes
–  Name and value
–  Domain
–  Path
–  Lifetime
–  Security Info

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 127

Cookie Structure

•  Name and value
–  The actual information (<name> = <value>)
–  Usually a session ID
–  Only these two parameters are mandatory!

•  Domain
–  The domain the cookie is valid for
–  Tells browser about valid domain names whose servers

would recognize this cookie
–  Promiscuous cookies are not allowed
–  Domain attribute must not contain top level domains

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 128

Cookie Structure

•  Path
–  Scope of validity on the server's site
–  Pages outside of that path cannot read or use the cookie
–  E.g. "/ " means: valid for the entire site

•  Lifetime
–  = "Expiration date"
–  If the lifetime is longer than the time the user spends at

that site, then this cookie is saved on disk for future
reference

•  Security Info
–  Whether a secure connection must be established before

sending this cookie (E.g. SSL)

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 129

HTTP Cookie Header Exchange

Content-type: text/html
Set-Cookie: foo=bar; path=/; expires

Mon, 09-Dec-2002 13:46:00 GMT

Content-type: text/html
Cookie: foo=bar

User Agent
(Browser)

User Agent
(Browser)

HTTP
Server

HTTP
Server

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 130

Cookie Risks

•  Note: Often used to track user behaviour !
•  Advertisers smuggle cookies on your disk!

–  Since most banners are references to other sites
•  E.g. "DoubleClick" (ad.doubleclick.net)

–  One of the most controversial issues of the Web!

•  Cookies can be turned off on most browsers
–  But some sites might not continue its service
–  Possible remedy for Unix machines

•  Create a symbolic link from the cookies directory to /dev/null

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 131

Web-Browsers

•  Browsers
–  Also known as "User Agents"
–  Use HTTP to access special encoded documents from a web-server

•  This documents are usually encoded in HTML
–  Should correctly display document content

•  Very complex applications
–  Must handle different HTML versions
–  Cascading Style Sheets
–  JavaScript
–  Several graphic formats
–  Security options
–  Several additional services

•  FTP, MAIL, and USENET capabilities

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 132

Web-Browsers

•  Big browser companies intentionally write non-standard-
conforming Browser software

•  Who controls Web-standards?
–  Led to "Browser-Wars"
–  Netscape vs. MS Internet Explorer

•  Other Browsers
–  Opera
–  Lynx

•  Very fast text browser
–  Mozilla

•  Best implementation of W3C HTML standards
•  Most sophisticated HTML engine "Gecko"
•  OpenSource

–  etc.

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 133

Web-Browsers Dynamic 1

•  So far we have handled a static behaviour only
–  The client requests a document and the server provides the content

•  To make the behavior more dynamic on the client side

–  JavaScript / JScript

–  JavaApplets

–  ActiveX

–  Flash

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 134

Web-Browsers Dynamic 2

•  JavaScript (ECMA-Script)

–  HTML extension and programming language by NetScape
–  Now standardized by ECMA-262
–  JavaScript programs are embedded as a source directly in an HTML

document
•  Structures like frame, form, window are implemented

–  The program is executed on the client browser while the downloaded
HTML is interpreted

•  Browser must be JavaScript enabled
–  JavaScript programs can control the behaviour of forms, buttons and

text elements. In addition, they can be used to create forms whose
fields have built-in error checking routines.

–  JScript is Microsoft´s answer to JavaScript

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 135

Web-Browsers Dynamic 3

•  JavaApplets
–  Java is a platform-independent, object-oriented programming

language inspired by C and C++ developed by SUN
–  As part of an HTML document Java programs are downloaded from

the server and executed on the client within a restricted area (Java
Virtual Machine (JVM) -> “sandbox” ; execution by interpreter),

–  A Java program started from inside an HTML (Web) page is called a
Java Applet as opposed to a Java program, which is executed from
the command line or otherwise on the local system

–  Java Applets were not supposed to touch anything local (outside of its
JVM), and could only communicate back to theserver it was
downloaded from.

–  With Java 1.1, applets can be signed with security keys and
certificates and can therefore be authenticated. Thus, an applet can
be authorized to access local resources, such as file systems, and it
may communicate with other systems.

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 136

Web-Browsers Dynamic 4

•  ActiveX
–  Is Microsoft´s answer to Java
–  Could be used to make MS-OS specific things visible and usable for

the WEB
•  e.g. content from HTML via OLE to Excel-table

–  ActiveX Controls could be compared with Java Applets but there is no
“sandbox” principle

•  User can specify barrier of trust only (similar to Internet Explorer)
–  Compiler must support Component Object Model (COM)

•  Flash
–  Is a proprietary SW product which can be used for animation of Web-

pages
–  It works just like a plugin by opening the corresponding program

•  Both ActiveX and Flash are not Internet standards

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 137

Web-Servers

•  Web-servers are basically http-servers
–  Listen at port 80

•  Examples
–  httpd NCSA

•  First http server
–  Apache

•  Most frequently used
•  Freeware

–  Internet Information Server (IIS)
•  Microsoft

–  Netscape Communications Server

•  Targets for DoS Attacks
–  No solution against it!

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 138

Web-Servers Dynamic 1

•  So far we have handled a static behaviour only
–  The client requests a document and the server provides the content

•  To make the behaviour more dynamic on the server side
–  Common Gateway Interface (CGI)
–  PHP (Hypertext Preprocessor)
–  Active Server Pages
–  Servlets
–  Server-Sides-Include (SSI)
–  Java Server Pages (JSP)

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 139

Web-Servers Dynamic 2

–  Common Gateway Interface (CGI)
•  Allows a Web server to execute a program that is provided by the

Web server administrator, rather than retrieving a file.
•  CGI programs allow a Web server to generate a dynamic

response, based on the client's input.
•  A variety of programming languages (C, Pascal, etc) can be used

to develop programs that interface with CGI. In principle any
compiled code could be executed, but normally only Scripts are
used which are interpreted at the running time.

•  The most popular interpreter is PERL (Practical Extraction and
Report Language) because programs are easily portable across
platforms.

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 140

Web-Servers Dynamic 3

–  PHP (Hypertext Preprocessor)
•  Alternative to CGI/PERL
•  PERL not optimized for dynamic Web pages
•  PHP is such an optimization
•  HTML documents stored on Web-servers can contain PHP

programs.
•  If a client requests such a HTML document the server executes

this program (interpreter), generates the final HTML-Code and
transport the requested HTML document to the client

–  Active Server Pages
•  Microsoft´s answer to PHP

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 141

Web-Servers Dynamic 4

–  Servlets
•  In order to spare resources on clients and networks, Java Applets

can be executed on the server rather than downloaded and started
at the client. Such programs are then referred to as Servlets.

•  Servlets are Java Applets running at the server side

–  Server-Sides-Include (SSI)
•  SSI is a technology which allows a Java enabled Web-server to

convert a section of an HTML file into an alternative dynamic
portion each time the document is sent to the client's browser.

•  This dynamic portion invokes an appropriate Servlet and passes to
it the parameters it needs. Servlets may not be written in Java.

•  The replacement is performed at the server and it is completely
transparent to the client.

•  Pages that use this technology have the extension .shtml instead
of .html (or .htm).

© 2016, D.I. Lindner / D.I. Haas Telnet-SSH-FTP-SMTP-HTTP, v6.0 142

Web-Servers Dynamic 5

–  Java Server Pages (JSP)
•  This is an easy-to-use solution for generating HTML (or other

markup languages such as XML) pages with dynamic content.
•  A JSP file contains combinations of HTML tags, NCSA tags

(special tags that were the first method of implementing server-
side includes), <SERVLET> tags, and JSP syntax.

•  JSP files have the extension .jsp.
•  JSP can be used to access reusable components, such as

Servlets, JavaBeans (reusable Java objects), and Java-based
Web applications. JSP also supports embedding inline Java code
within Web pages.

