
© 2016, D.I. Lindner / D.I. Haas

Page 11 - 1

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

Changes to version v5.1:

Slide 35: SEQ and ACK numbers corrected for TCP Disconnect
Slide 158: New RFC for NAT stated

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 2

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 3

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 4

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

In this Chapter we talk about TCP. TCP is a connection-oriented layer 4 protocol and only
works between the hosts. It synchronizes (connects) the hosts with each other via the “3-Way-
Handshake” before the real transmission begins. After this a reliable end-to-end transmission
is established. TCP was standardized in September 1981 in RFC 793. (Remember: IP was
standardized in September 1981 too, RFC 791). TCP is always used with IP and it also
protects the IP packet as its checksum spans over (almost) the whole IP packet.

TCP provides error recovery, flow control and sequencing. TCP provides its service to higher
layer through ports (OSI: Service Access Points).

One important thing with TCP is the Port-Number, which will be discussed later in this chapter.

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 5

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

TCP hides the details of the network layer from the higher layers and frees them from the tasks
of transmitting data through a specific network. End systems see the network communication
as reliable transport pipe (which could be compared with a virtual circuit already known from
the network principles chapter) connecting them to each other.

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 6

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

Every IP datagram which is sent along with TCP will be acknowledgment (error recovery). From
the TCP perspective we call each TCP block a segment.

In general, segments are encapsulated in single IP datagrams.

Maximum segment size depends on max. packet or frame size used by IP next hop link
(fragmentation is possible)

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 7

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

Each communicating computer process is assigned a locally unique port number. Using port
numbers TCP can service multiple processes such as a web browser or an E-Mail client
simultaneously through a single IP address. In summary TCP works like a stream multiplexer
and demultiplexer.

Well known ports are reserved for common applications and services (like Telnet, WWW, FTP
etc.) and are in the range from 0 to 1023. They are controlled by IANA (Internet Assigned
Numbers Authority).
Registered ports start at 1024 (e.g. Lotus Notes, Cisco XOT, Oracle, license managers etc.).
They are used by proprietary server applications They are not controlled by the IANA but only
listed -> see RFC1700 for details.

Remember: A TCP connection is always initiated from client to server.

Server applications listen on their well-known ports for incoming TCP connections. A well-
known port of a server process is used as destination port of an outgoing TCP segment from
the client.

Client applications chose a free port number (which is not already used by another outgoing
TCP connection) as the source port of an outgoing TCP segment sent to the server.

Some services like FTP (File Transfer Protocol) or RPC (Remote Procedure Call) use
dynamically assigned port numbers. Sun RPC (Remote Procedure Call) uses a portmapper

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 8

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 9

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

The TCP software functions like a multiplexer and demultiplexer for several TCP connections:
Port 25 on system A: process 1, system A <--------> port 1234, process 9, system C
Port 80 on system A: process 2, system A <--------> port 3333, process 3, system B

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 10

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

The client applications chose a free port number (which is not already used by another
connection) as the source port. The destination port is the well-known port of the server
application. For example: Host B runs a Mail-Program (POP3, well known port 110) and the
client application uses the source port (SP) 7312. The TCP segment is send to the server with
a destination-port (DP) of 110. Now the server knows host B and B makes a mail-check over
POP3.

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 11

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

Server process multiplexes incoming streams with same destination port numbers according
source IP address.

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 12

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 13

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

Well-known ports together with the socket concept allow several simultaneous connections
(even from a single machine) to a specific server application. Server applications listen on their
well-known ports for incoming connections.

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 14

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 15

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

The picture above shows the 20 byte TCP header plus optional options. Remember that the IP
header has also 20 bytes, so the total sum of overhead per TCP/IP packet is 40 bytes.

It is important to know these header fields, at least the most important parts:
The Port numbers – most important, to address applications
The Sequence numbers (SQNR and Ack) – used for error recovery
The Window field – used for flow control
The flags SYN, ACK, RST, and FIN – for session control

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 16

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

The Source and Destination Port fields are 16 bits and used by the application.
The Header Length indicates where the data begins. The TCP header (even one including
options) is an integral number of 32 bits long.
Sequence Number: 32 bit. Number of the first byte of this segment. If SYN is present the
sequence number is the initial sequence number (ISN) and the first data byte is ISN+1.
Acknowledge Number: 32 bit. If the ACK control bit is set this field contains the value of the
next sequence number the sender of the segment is expecting to receive. Once a connection is
established this is always sent.

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 17

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

SYN-Flag: 1 Bit. Control Bit.
Used for call setup. If the SYN bit is set to 1, the application knows that a host want to
established a connection with him. Also used to synchronization the sequence numbers
because the sequence number holds the initial value for a new session. Most firewalls discard
TCP segments with SYN=1 if a host want to established a connection to a server application
which is not allowed for security reasons.
ACK-Flag: 1 bit. Control Bit.
Acknowledgment Bit. If set, the acknowledge number is valid and indicates the sequence
number of the next octet expected by the receiver

FIN-Flag: 1 bit. Control Bit.
The FIN-Flag is used in the disconnect phase. It indicates that this segment is the last one. If
set, the Sequence Number holds the number of the last transmitted byte of a session. Using
this number a process can indicate all data that have been received by him. After the other side
has also sent a segment with FIN=1, the connection is closed.
RST-Flag: 1 bit. Control Bit.
If set, the session has to be cleared immediately (reset). Can be used to refuse a connection-
attempt or to "kill" a current connection.

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 18

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

PSH-Flag: 1 Bit. Control Bit.
A TCP instance can decide on its own, when to send data to the next instance. One strategy
could be, to collect data in a buffer and forward the data when the buffer exceeds a certain
size. To provide a low-latency connection sometimes the PSH Flag is set to 1. Then TCP
should push the segment immediately to the application without buffing. But typically the PSH-
Flag is ignored.

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 19

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

URG-Flag: 1 Bit. Control Bit.
Sequence number of last urgent byte = actual segment sequence number + urgent pointer
RFC 793 and several implementations assume the urgent pointer to point to the first byte after
urgent data. However, the "Host Requirements" RFC 1122 states this as a mistake! When a
TCP receives a segment with the URG flag set, it notifies the application which switch into the
"urgent mode" until the last byte of urgent data is received. Examples for usage: Interrupt key in
Telnet, Rlogin, or FTP.
Urgent Pointer: 16 bits. The urgent pointer points to the sequence number of the byte
following the urgent data. This field is only be interpreted in segments with the URG control bit
set.

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 20

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

Window Size: 16 bit. The number of data bytes beginning with the one indicated in the
acknowledgment field which the sender of this segment is willing to accept. See windowing /
flow control slides.

Set by the receiver side of a TCP stream with every transmitted segment to signal the allowed
current window size to the sender; this "dynamic windowing" enables receiver-based flow
control. The value defines how many additional bytes will be accepted, starting from the current
acknowledgment number plus window value seen in this segment.
Remarks: Once a given range for sending data was given by a received window value, it is not
possible to shrink the window size to such a value which gets in conflict with the already
granted range. So the window field must be adapted accordingly in order to achieve the flow
control mechanism STOP.

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 21

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

TCP Checksum: 16 bit. The checksum includes the TCP header and data area plus a 12 byte
pseudo IP header (one's complement of the sum of all one's complements of all 16 bit words).
The pseudo IP header contains the source and destination IP address, the IP protocol type and
IP segment length (total length). This guarantees, that not only the port but the complete
socket is included in the checksum. Including the pseudo IP header in the checksum allows the
TCP layer to detect errors, which can't be recognized by IP (e.g. IP transmits an error-free TCP
segment to the wrong IP end system).
Options: Variable length. Options may occupy space at the end of the TCP header and are a
multiple of 8 bits in length. Only the Maximum Message Size (MSS) is used. All options are
included in the checksum.
Padding: Variable length. The TCP header padding is used to ensure that the TCP header
ends and data begins on a 32 bit boundary. The padding is composed of zeros.

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 22

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 23

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

A TCP connection ist established by a 3-way handshake procedure.

The diagram above shows the famous TCP 3-way handshake. The TCP 3-Way-Handshake is used to
connect and synchronize two host with each other, that is, after the handshake procedure, both stations
know the sequence numbers of each other.
The connection procedure (3-Way-Handshake) works with a simple principle. The host sends out a
segment with SYN=1 (remember: if SYN=1 the application knows that the host want to established a
connection) and the host also choose a random sequence number (SEQ). After the Server receives the
segment correct, he acknowledgment (host-SEQ+1), also choose a random SEQ, and send back the
segment with SYN=1. Remember the ACK-flag is always set, except in very first segment. Because the
server sends back a segment with SYN=1 the host knows the connection is accepted. After the host
sends a acknowledgement to the server the connection is established.
Note that a SYN consumes one sequence number! (After the 3-way handshake, only data bytes consume
sequence numbers.)

Why do we need such a procedure?

Remember TCP uses the unreliable service of IP, hence TCP segments of old sessions (e.g.
retransmitted or delayed segments, duplicates) could disturb the establishment of a new TCP connection
but also the new TCP connection itself. Thus sequence numbers must be unique for different sessions of
the same socket.

Random starting sequence numbers, an explicit negotiation of starting sequence numbers and a huge
sequence number range make a TCP connect immune against spurious datagrams. Initial sequence
number (ISN) must be chosen with a good algorithm.
RFC793 suggests to pick a random number at boot time (e.g. derived from system start up time) and
increment every 4 µs. Every new connection will increment additionally by 1.

Also disturbing segments (e.g. delayed TCP segments from old sessions) and old "half-open" connections
are deleted with the RST flag.

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 24

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

After the 3-way-handshake is finished the real data transfer is stared. A 20 Byte segment is
sending to the server (ACK 401, SEQ 731). After the server receives the segment, he sets the
ACK-flag to 751 (SEQ+20 Byte) and the SEQ to 401. Then he sends the segment back (ACK
751, SEQ 401) to the host. After the host receives this segment he know that his 20 byte of
date delivers correct (because he gets the ACK 751). The host continuous sending his data to
the server.

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 25

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

The acknowledge number is equal to the sequence number of the next octet to be received.

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 26

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

Its not a problem for TCP when a acknowledgment get lost, because TCP acknowledges all in-
sequence received data with every cumulative acknowledgement. The timers, which are
started after sending an segment, are immediately stopped by receiving any an ACK.

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 27

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

In case of out-of-sequence arrival of segments the receiver stops sending ACKs until the failure
is repaired. The sender of the lost segment will wait for ACKs and will retransmit the segment
as duplicate after the timer, which was started after sending the original segment, runs into
timeout. (RTO). That was the original implementation of TCP (old TCP) -> Positive
Acknowledgment based on timeouts only for error recovery.

Reasons for appearance of duplicate segments in the network:

1.) Because original segment was lost: No problem in that case for the receiver. The
retransmitted segment fills the gap and no duplicate segment seen at the receiver.
2.) Because ACK was lost or retransmit timeout expired: No problem again. The segment is
recognized by the receiver as duplicate through the sequence number.
3.) Because original segment was delayed and timeout expired: No problem again. The
segment is recognized by the receiver as duplicate through the sequence number.

The large sequence numbers space of 232 further helps to differentiate segments from old and
new TCP in case the same sequence numbers happens to be used by the old and new TCP
session. It will need 9h to send 232 bytes in a sequence with 2 Mbit/s before a wrap around will
occur. Compare that to usual IP TTL = 128 seconds.

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 28

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

Instead of suspending ACKs in case of out-of-sequence arrival of segments, the receiver may
also repeat the last valid Ack = Duplicate Ack in order to notify the sender immediately about a
missing segment (hereby aiding “slow start and congestion avoidance“ handled later in this
chapter.

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 29

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 30

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 31

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

Value of retransmission timeout influences performance (timeout should be in relation to round
trip delay = round-trip-time RTT). If the timeout is much larger than the actual RTT then in case
an error occurred the sender waits to long in order to heal it by retransmission of the lost
segment(s). If the timeout is much smaller than the actual RTT then even in the case of no
error the sender retransmit a segment to early.

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 32

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

The exponential backoff algorithm means that the retransmission timeout is doubled every time
the timer expires and the particular data segment was still not acknowledged. However, the
backoff is truncated usually at 64 seconds.

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 33

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 34

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

Sessions may remain up even for month without any data being sent.
The Host Requirements RFC mentions three disadvantages: 1) Keepalives can cause perfectly
good connections to be dropped during transient failures, 2) they consume unnecessary
bandwidth, and 3) they cost money when the ISP charge at a per packet base. Furthermore
many people think that keepalive mechanisms should be implemented at the application layer.

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 35

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

The “ordered” disconnect process is also a handshake, slightly similar to the 3-Way-
Handshake. The exchange of FIN and ACK flags ensures, that both parties have received all
octets.

The FIN flag marks the sequence number to be the last one; the other station acknowledges
and terminates the connection in this direction. The exchange of FIN and ACK flags in such a
way ensures, that both parties have received all bytes. The RST flag can be used if an error
occurs during the disconnect phase

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 36

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 37

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 38

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 39

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

During the transmission the sliding window moves from left to right, as the receiver
acknowledges data.

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 40

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

The relative motion of the two ends of the window open or closes the window.

The window closes when data - already sent - is acknowledged (the left edge advances to the
right).
The window opens when the receiving process on the other end reads data - and hence frees
up TCP buffer space - and finally acknowledges data with a appropriate window value (the right
edge moves to the right).

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 41

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

If the left edge reaches the right edge, the sender stops transmitting data - zero usable window

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 42

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 43

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

Some rules for handling sliding window in TCP:

The right edge of the window must not move leftward! Would be called shrinking window.
However, TCP must be able to cope with a peer doing that by e.g. resetting the TCP
connection with RST flag.

The left edge of the window cannot move leftward because it is determined by the
acknowledgement number of the receiver. Only a duplicate ACK would imply to move the left
edge leftwards, but duplicate ACKs are silently discarded.

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 44

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

Only if the ACK also contains data then the peer would retransmit it after timer expiration.
Window probes may be used to query receiver if window has been opened already.

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 45

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

Since sender really has data to send the sender can use single bytes of the bytestream to be
send for ACK probes. The window probing interval is increased similar as the normal
retransmission interval following a truncated exponential backoff, but is always bounded
between 5 and 60 seconds. If the peer does not open the window again the sender will transmit
a window probe every 60 seconds.

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 46

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 47

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

“Slow Start” and “Congestion avoidance” are mechanisms that control the segment rate (per
RTT). It allows a sender-controlled flow control as add on to the receiver-controlled flow control
based on the window field.
“Fast Retransmit” and “Fast Recovery” are mechanisms to avoid waiting for the timeout in case
of retransmission and to avoid slow start after a fast retransmission.
Selective Acks enhance the traditional positive-ack-mechanism and allows to selectively
acknowledge some correctly received segments within a larger corrupted block.
Window Scaling deals with the problem of a jumping window in case the RTT-BW-product is
greater than 65535 (the classical max window size). This TCP option allows to left-shift the
window value (each bit-shift is like multiply by two).
These topics are covered in the TCP performance chapter.
Delayed ACKs and Nagle algorithm is shown on the next slides.

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 48

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

Immediate acknowledgements may cause an unnecessary amount of data transmissions.

Normally, an acknowledgement would be send immediately after the receiving of data.

But in interactive applications, the send-buffer at the receiver side gets filled by the application
soon after an acknowledgement has been sent (e.g. Telnet echoes).

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 49

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

In order to support piggy-backed acknowledgements (i.e. Acks combined with user data), the
TCP stack waits 200 ms before sending the delayed acknowledgement. During this time, the
receiving application might also have data to send.
That is: 50% less (interactive!) traffic using delayed acknowledgements .

.

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 50

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

Delayed Acknowledgements is typically used with applications like Telnet: Here each client-
keystroke triggers a single packet with one byte payload and the server must response with
both an echo plus a TCP acknowledgement. Note that also this server-echo must be
acknowledged by the client. Therefore, layer-4 delays the acknowledgements because perhaps
layer-7 might want to send some bytes also.

Actually the kernel maintains a 200 msec timer and every TCP session waits until this central
timer expires before sending an ACK. If we are lucky the application has given us also some
data to send, otherwise the ACK is sent without any payload. This is the reason, why we
usually do not observe exact 200 msec delay between reception of a TCP packet and
transmission of an ACK, rather the delay is something between 1 and 200 msec.

The Hosts Requirement RFC (1122) states that TCP should be implemented with Delayed ACK
and that the delay must be less than 500 ms.

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 51

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

The Nagle algorithm tries to make WAN connections more efficient. We simply delay the
segment transmission in order to collect more bytes from layer 7.

A tinygram is a very small packet, for example with a single byte payload. The total packet size
would be 20 bytes IP, 20 bytes TCP plus 1 byte data (plus 18 bytes Ethernet). No problem on a
LAN but lots of tinygrams may congest the (typically much) slower WAN links.
In this context, "small" means less than the segment size.

Note that the Nagle Algorithm can be disabled, which is important for certain real-time services.
For example the X Window protocol disables the Nagle Algorithm so that e. g. real-time
feedback of mouse movements can be communicated without delay.
The socket API provides the symbol TCP_NODELAY.

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 52

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 53

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

Note that hosts only need to deal with a single or a few TCP connections while network nodes
such as routers and switches must transfer thousands, sometimes even millions of
connections. Those nodes must queue datagrams and schedule them on outgoing interfaces
(which might be slower than the inbound rates). If all TCP senders transmit at "maximum
speed" – i. e. what is announced by the window – then network nodes may experience buffer
overflows.

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 54

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 55

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

Using TCP the depths of the queues at network bottlenecks are controlled by the ACK
frequency, therefore TCP is called to be ACK-clocked. Only when an ACK is received the next
segment is sent. Therefore TCP is self-regulating and the queue-depth is determined by the
bottleneck: Every node runs exactly at the bottleneck link rate. If a higher rate would be used,
then ACKs stay out and TCP would throttle its sending rate.

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 56

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

Duplicate ACKs should be sent immediately that is it should not be delayed.

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 57

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

The MSS is typically around 1024 bytes or more but does NOT count the TCP/IP header
overhead, so the true packet is 20+20 bytes larger. The MSS is not negotiated, rather each
peer can announce its acceptable MSS size and the other peer must obey. If no MSS option is
communicated then the default of 536 bytes (i. e. 576 in total with IP and TCP header) is
assumed.
Note: The MSS is only communicated in SYN-packets.

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 58

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

Note that the sender may transmit up to the minimum of the congestion window (cwnd) and the
advertized window (W).
The cwnd implements sender-imposed flow control, the advertized window allows for receiver-
imposed flow control. But how does this mechanism deal with network congestion? Continue
reading!

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 59

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

The picture shows the two unidirectional channels between sender and receiver as pipe
representation.
Observe how the cwnd is increased upon reception of ACKs.

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 60

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

Observe the exponential growth of the data rate.

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 61

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

We are approaching the limit soon…

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 62

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

At t=31, the pipe is ideally filled with packets; each time an ACK is received, another data
packet is injected for transmission.
In our example cwnd=8 is the optimum, corresponding to 8 packets that can be sent before
waiting for an acknowledgement. This optimum is expressed via the famous bandwidth-delay
product, i. e.

 pipe capacity = BW x RTT ,
where the capacity is measured in bits, RTT in seconds, and the BW in bits/sec.
Our problem now is how to stop TCP from further increasing the cwnd… (continue reading).

(BTW: Of course this illustration is not completely realistic because the spacing between the
packets is distorted by many packet buffers along the path.)

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 63

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

Large enough means a value which covers the sum of serialization-, switching- and
propagation-delays.
Note: window size maybe also be limited because of memory constraints (buffer) at the sender
or receiver side

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 64

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

Timeout means heavy or high congestion -> all segments in a row were dropped in a tail-drop
queue.
Duplicate ACK means, that still something is reaching the destination -> small or low
congestion which causes maybe a single segment loss only.

Note this central TCP assumption: Segments are dropped because of buffer overflows and
NOT because of bit errors! Therefore segment loss indicates congestion somewhere in the
network.

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 65

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

Note: ssthresh marks a safe window size because congestion occurred at a window size of 2 x
ssthresh.

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 66

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 67

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 68

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 69

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

Note that when slow start's exponential increase is only performed as long as cwnd is less or
equal ssthresh. In this range, cwnd is increased by one with every received ACK. But if cwnd is
greater than ssthresh, then cwnd is increased by 1/cwnd every received ACK. This means,
cwnd is effectively increased by one every RTT.
Note that is not the complete algorithm. We must additionally discuss Fast Retransmit and Fast
Recovery—see next slides.

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 70

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

The diagram above shows the typical TCP behavior of one flow. There are two important
algorithms involved with TCP congestion control: "Slow Start" increases the sending rate
exponentially beginning with a very low sending rate (typically 1-2 segments per RTT). When
the limit of the network is reached, that is, when duplicate acknowledgement occur, then
"Congestion Avoidance" reduces the sending rate by 50 percent and then it is increased only
linearly.
The rule is: On receiving a duplicate ACK, congestion avoidance is performed. On receiving no
ACK at all, slow start is performed again, beginning at zero sending rate.
Note that this is only a quick and rough explanation of the two algorithms—the details are a bit
more complicated. Furthermore, different TCP implementations utilize these algorithm
differently.

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 71

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

TCP has been designed for data traffic only. Error recovery does not make sense for voice and
video streams. TCP checks the current maximum bandwidth and tries to utilize all of it. In case
of congestion situations TCP will reduce the sending rate dramatically and explores again the
network's capabilities. Because of this behavior TCP is called "hungry but fair".
The problem with this behavior is the consequence for all other types of traffic: TCP might
grasp all it can get and nothing is left for the rest.

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 72

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 73

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

Fast Retransmit requires a receiver to send an immediate duplicate acknowledgement in order
to notify the sender which segments are (still) expected by the receiver.

But when should retransmission occur? The receiver will also send duplicate
acknowledgements when segments are arriving in the wrong order typically caused by a
rerouting event in the network. Observations have shown that reordering in such a case causes
one or two duplicate Acks on the average and only if three or more duplicate acks are seen
then this is a strong indication for a lost segment. In such a case Fast Retransmission is done,
i. e. TCP does not wait until segment’s retransmission timer expires.

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 74

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

Why cwnd= ssthresh/s + 3 x MSS?

Remember: Fast Retransmit waits for 3 duplicate ACKs; from this can be concluded that the
receiver must have received 3 segments already.

Hence Congestion avoidance, but not slow start should be performed. The receiver could only
generate a duplicate ACK when another segment is received. That is there are still segments
flowing through the network! Slow start would reduce this flow abruptly!

After that for each additional duplicate ACK the sender increases cwnd by 1 segment size.
Upon receiving a normal ACK cwnd is set to ssthresh and sender resumes normal congestion
avoidance mode.

Fast Recovery allows the sender to maintain the ack-clocked data rate for new data while the
single segment loss repair is being undertaken. Note: if send window would be closed more
abruptly the synchronization via duplicate ACKs would be lost. Still the single segment loss
indicates congestion and back off to normal congestion avoidance mode must be done after
that repair.

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 75

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 76

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

When one or two duplicate ACKs are received, TCP does not react because packet reorder is
probable. Upon the third duplicate ACK TCP assumes that the segment (for which the duplicate
ACK is meant) is really lost. TCP now immediately retransmit the packet (i. e. it does not wait
for any timer expiration), sets ssthresh to min{W, cwnd}/2 and then cwnd three segment sizes
greater than this ssthresh value. If TCP still receives duplicate ACKs then obviously good
packets still arrive at the peer; and therefore TCP continuous sending new segments—hereby
incrementing cwnd by one segment size for every another duplicate ACK (this actually allows
the transmission of another new segment). As soon as a normal (=not duplicate) ACK is
received (=it acknowledges the retransmitted segment) cwnd is set to ssthresh (=continue with
normal congestion avoidance).

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 77

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 78

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 79

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 80

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 81

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 82

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

The "queue depth" denotes the amount of packets waiting in the queue for being forwarded. (It
is NOT the size of the whole queue.)

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 83

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 84

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

Many TCP streams in a network tend to synchronize each other in terms of intensity. That is,
all TCP users recognize congestion simultaneously and would restart the slow-start process
(sending at a very low rate). At this moment the network is not utilized. After a short time, all
users would reach the maximum sending rate and network congestion occurs. At this time all
buffers are full. Again all TCP users will stop and nearly stop sending again. This cycle
continues infinitely and is called the TCP wave effect. The main disadvantage is the relatively
low utilization of the network.

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 85

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

Random Early Discard (RED) is a method to de-synchronize the TCP streams by simply drop
packets of a queue randomly.
RED starts when a given queue depth is reached and is applied more aggressively when the
queue depth increases.
RED causes the TCP receivers to send duplicate ACKs which in turn causes the TCP senders
to perform congestion avoidance.
 The trick is that this happens randomly, so not all TCP applications are affected equally at the
same time.

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 86

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 87

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 88

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 89

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 90

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

Although the principle of RED is fairly simply it is known to be difficult to tune. A lot of research
has been done to find out optimal rules for RED tuning.

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 91

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

The limits of interpreting symptoms only:
Slow start and congestion avoidance try to maximize the traffic throughput without inclusion of
network information. It is a host-based congestion control. Original IP idea: "Keep the network
simple !“ Slow start and congestion avoidance suspects congestion only by observing
symptoms of the network.
Further improvements require an active inclusion of the intermediate network. This led to the
introduction of an Explicit Congestion Notification mechanism which requires the help from
routers that are expecting congestion (similar to the FECN seen in Frame Relay and EFCI in
ATM)

The RFC 2481 originally identified the two bits: The ECN-Capable Transport (ECT) bit would be
set by the data sender to indicate that the end-points of the transport protocol are ECN-
capable. The CE bit would be set by the router to indicate congestion to the end nodes.
Routers that have a packet arriving at a full queue would drop the packet, just as they do it
now.

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 92

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

RFC 3168 - The Addition of Explicit Congestion Notification (ECN) to IP

Why are two ECT codepoints used? As short answer: This has several reasons and supports
multiple implementations, e. g. to differentiate between different sets of hosts etc.
But the most important reason is to provide a mechanism so that a host (or a router) can check
whether the network (or the host, respectively) indeed supports ECN. ECN has been
introduced in the mid-1990s and the inventors wanted to increase the pressure for hosts and
routers to migrate. On the other hand non-ECN hosts could simply set the ECT-bit (see
previous slide) and claimed to support ECN: Upon congestion the router would not drop the
packet but only mark it. While ECN-capable host would reduce their TCP window, ECN-faking
hosts would still remain at their transmission rate. Now the two ECT codepoints could be used
as Cookie which allows a host to detect whether a router erases the ECT or ECN bit. Also it
can be tested whether the other side uses ECN.
If you do not fully understand this please read the RFCs and search in the WWW – there a lots
of debates about that.

By the way: The bit combination 01 indeed stands for ECT(1) and not ECN(0). This is no typo.

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 93

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

During TCP connection establishment, the ECN capability is negotiated. Additionally ECN
requires the two TCP options "ECN-Echo" flag and "Congestion Window Reduced" (CWR) flag.
Then the sender sets the ECT bit in the IP header of all datagram it sends. When routers
experience congestion they may mark the IP header of such packets with an explicit CE bit
flag.

The receiver detects the CE flag and sets the TCP ECN-Echo flag in its acknowledgement
segment. If the sender receives this acknowledgement segment with the ECN-echo flag set,
the sender reduces its congestion window (-> congestion avoidance) and the sender sets the
TCP CWR flag in its next segment in order to notify the receiver that the sender has reacted
upon the congestion.

Main advantage: The sender does not have to wait for three duplicate ACKs to detect the
congestion. He can react before dropping of segments will occur in the network by routers.

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 94

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 95

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 96

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 97

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

UDP is connectionless and supports no error recovery or flow control. Therefore an UDP-stack
is extremely lightweight compared to TCP.
Typically applications that do not require error recovery but rely on speed use UDP, such as
multimedia protocols.

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 98

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

Recognizes that even the IP hosts see a transport pipe, this pipe is unreliable.

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 99

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

Nowadays typically applications that do not require error recovery but rely on speed use UDP,
such as multimedia protocols.

Note: Digitized voice is critical concerning delay but not against loss.

Voice is encapsulated in RTP (Real-time Transport Protocol) and RTP is encapsulated in UDP.
RTCP (RTP Control Protocol) propagates control information in the opposite direction. RTCP
again is encapsulated in UDP.

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 100

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

Compared to the TCP Header, the UDP is very small (8 byte to 20 byte) because UDP makes
no error recovery or flow control.

Basically UDP adds just process addressing capabilities by usage of port numbers to best-
effort service offered by IP.

Source and Destination Port:
Port number for addressing the process (application). Well known port numbers defined in
RFC1700

UDP Length:
Length of the UDP datagram (Header plus Data).
I personally think that the length field is just for fun (or to align with 4 octets). The IP header
already contains the total packet length.

UDP Checksum:
Checksum includes pseudo IP header (IP src/dst addr., protocol field), UDP header and user
data. One´s complement of the sum of all one´s complements.
Note that the checksum is often not calculated,

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 101

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 102

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 103

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 104

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 105

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 106

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

In this chapter we discuss the idea of Network Address Translation and special issues
associated to it. Invented in 1994, NAT became a quite popular technique to save official
network addresses and to hide the own network topology from the Internet

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 107

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 108

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

NAT allows a router to swap packet addresses. The initial idea was to mitigate IP address
depletion by masquerading internal IP addresses with (perhaps a smaller number of) official
addresses. We will discuss this later on.
The first and the second point reflect the same thing, but the first statement comes from the
ISP while the second point is an argument for the customer.
The third point means that the customer does not need to change her address plan when she
switches to another ISP.
As stated in the fourth point, NAT additionally allows for TCP load sharing. Assume a bunch of
servers represented by a single IP address to the outside.
Finally, NAT improves network security by hiding the actual host addresses. Frequently NAT
boxes are combined with proxy and firewalling functions.

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 109

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

To understand standard documents such as RFCs or vendor documents such as Cisco white
papers or similar, it is very important to understand four terms.

Firstly we have to distinguish the inside from the outside world. Inside is our own network
(which we want to hide using a NAT-enabled router later on). Outside is the rest of the world,
especially the Internet.

Secondly, suppose we do not use NAT. Therefore we use global addresses everywhere. That
is, we use addresses that are registered by the NIC and can be seen from outside.

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 110

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

Using a NAT enabled router we can use inside local addresses which are not unique in the
world. This addresses are not registered and must be translated to outside global addresses.

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 111

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

1)  Suppose the user at host 10.1.1.1 opens a connection to host 198.5.5.55.
2)  The first packet that the router receives from host 10.1.1.1 causes the router to check its

NAT table.
3) The router replaces the source address with the global address found in the NAT table.

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 112

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

Host 198.5.5.55 responds to host 10.1.1.1 by using the global address 193.9.9.1 as destination
address.
When the router receives a packet with the inside global address 193.9.9.1 it performs a NAT
table lookup to determine the associated inside local address.
The router translate 193.9.9.1 to 10.1.1.1 and forwards the packet to host 10.1.1.1.

FYI:
Inside-to-outside translation occurs after routing
Outside-to-inside translation occurs before routing

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 113

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

Note: TCP's checksum also covers a pseudo IP header which contains the source and
destination IP addresses.

NAT devices were intended to be unmanaged devices that are transparent to end-to-end
protocol interaction. Hence no specific interaction is required between the end systems and the
NAT device.

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 114

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 115

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

If no translation entry exists, the router determines that the source address must be translated
dynamically and selects a legal global address from the predefined dynamic address pool and
creates a translation entry.

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 116

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 117

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

Many-to-one translation is accomplished by identifying each traffic according to the source port
numbers. This method is commonly known as Port Address Translation (PAT). In the IETF
documents you will also see the abbreviation NAPT. In the Linux world it is known as
masquerading.

When N inside hosts use the same source port numbers, the PAT-routers will increase N-1 of
these identical source port numbers to the next free values.

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 118

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

The port number is the differentiator. Note that the TCP and UDP port number range allows up
to 65,536 number per IP address. This number is the upper limit for simultaneous
transmissions per inside-global IP address.

If the port numbers run out, PAT will move to the next IP address and try to allocate the original
source port again. This continues until all available ports and IP addresses are utilized. If a
PAT router run out of addresses, it drops the packet and sends an ICMP Host Unreachable
message.

Generally, NAT/PAT is only practical when relatively few hosts in a stub domain communicate
outside of the domain at the same time. In this case, only a small subset of the IP addresses in
the own domain must be translated into globally unique IP addresses.

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 119

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

In this example both inside hosts (10.1.1.1 and 10.1.1.2) connect to the same outside
webserver. The outside global addresses are identical. The destination port number is used to
translate to the corresponding inside host.

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 120

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 121

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 122

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 123

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 124

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

This slide summarizes all terms by showing packets flowing from inside to outside and from
outside to inside. Local is what we can use inside our network. Inside local source addresses
are always private addresses otherwise we won't use NAT.

Outside local addresses can be either private or registered. Mostly they are registered, but in
certain cases we might want to present official registered addresses in incoming packets as
being private addresses. See the slide "Outside Address Translation" for this special case.
Typically the outside local address is mostly identical with the outside global address.

The inside global address is the official address of our hosts as seen in the Internet. What
people mostly expect from NAT is to translate an inside local address to an inside global
address. Both addresses belong to a host inside our network.

The outside global address is the official registered IP address of an Internet host. Mostly it is
identical with our outside local address we use as destination address for outgoing packets.
See the slide "Outside Address Translation" for exceptions.

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 125

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 126

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 127

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 128

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

Overlapping networks occur if we use non-legal (not officially assigned) IP addresses that
officially belong to another network. We can do that if we use NAT to translate our internal
addresses into global ones. However, if we want to communicate with the other network (that
use our inside-local addresses as global ones) we must consider some special issues...

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 129

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

First we examine the simple case. Suppose we used a class A network 9.0.0.0 for several
years and now we want to give it back to the world (thereby earning a lot of money from our
ISP).

Now we will present our network through NAT to the outside world. Obviously the class A range
we had given away will be used by other customers, so incoming packets might have the same
source addresses as we still use for our devices. Clearly we should renumber our hosts with
RFC1918 private addresses.

But if we had a big number of hosts we might not want to renumber all devices, instead we will
translate the source addresses of incoming packets if they come from the true class-A network
9.0.0.0. By changing to an outside-local address, these packets can be routed outside.

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 130

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 131

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

This is a more tricky issue. Usually we do not know IP addresses of outside hosts, rather we
ask a DNS server for name resolution.

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 132

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 133

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

But what, if the DNS server replies an IP address which is supposed to be inside our own
network? In this case the NAT router must manipulate the layer-7 DNS information and
translate the global-outside addresses.

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 134

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

The router examines every DNS reply, ensuring that the resolved address is not used inside.
In such overlapping situations the router will translate the address.

Note:
Cisco NAT is able to inspect and perform address translation on A (Address) and PTR (Pointer)
DNS Resource Records.

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 135

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

Of course if the destination address of outgoing packets match a previously introduced outside-
local address, it must be translated into a outside-global address.

The same performance is done in a converse situation where the DNS server is inside and a
DNS request is sent by an outside host. If the name resolution result in an inside local address
the NAT router has to translate this address.

NOTE: Cisco IOS does not translate addresses inside DNS zone transfers.

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 136

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 137

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 138

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

TCP load sharing is an enhanced NAT feature and is used inside the Intranet because this has
nothing to do with private address translation. If we want to offer a highly loaded specific
service to users, we can employ a NAT router to map a single inside-global address (the virtual
host address which is known to the users) to multiple inside-local addresses, each assigned to
a real host. Everytime a user connects to the virtual host and wants to establish a session, this
session is mapped to one of the real hosts in a round-robin manner. That is why the group of
real hosts is called "rotary group".

Note that the NAT router has no idea of the load distribution. Neither the service availability is
known to the router!

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 139

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 140

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 141

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 142

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 143

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 144

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 145

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 146

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 147

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

© 2016, D.I. Lindner / D.I. Haas

Page 11 - 148

Datenkommunikation 384.081

L11 - TCP, UDP and NAT (v6.0)

