
Internet Transport Layer

TCP Fundamentals, TCP Performance Aspects,
UDP (User Datagram Protocol),

NAT (Network Address Translation)

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 2

Agenda

•  TCP Fundamentals
–  Principles, Port and Sockets
–  Header Fields
–  Three Way Handshake
–  Windowing
–  Enhancements

•  TCP Performance
–  Slow Start and Congestion Avoidance
–  Fast Retransmit and Fast Recovery
–  TCP Window Scale Option and SACK Options
–  Explicit Congestion Notification (ECN)

•  UDP
•  RFC Collection
•  NAT

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 3

IP transmission over

ATM
RFC 1483

IEEE 802.2
RFC 1042

X.25
RFC 1356

FR
RFC 1490

PPP
RFC 1661

TCP/IP Protocol Suite

Physical

Link

Network

Transport

Session

Presentation

Application SMTP HTTP
HTTPS FTP Telnet

SSH DNS DHCP
(BootP) TFTP etc.

TCP
(Transmission Control Protocol)

UDP
(User Datagram

Protocol)

IP (Internet Protocol)
ICMP

ARP RARP

 Routing Protocols

 RIP OSPF
 BGP

(US-ASCII and MIME)

(RPC)

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 4

TCP (Transmission Control Protocol)

•  TCP is a connection oriented
–  Call setup with "three way handshake"

•  Provides a reliable end-to-end transport of data between
computer processes of different end systems
–  Error detection and recovery
–  Maintaining the order of the data (sequencing) without duplication or

loss
–  Flow control

•  Application's data is regarded as continuous byte stream
–  TCP ensures a reliable transmission of segments of this byte stream
–  Handover to Layer 7 at so called "Ports"

•  OSI-Speak: Service Access Point

•  RFC 793

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 5

4 4

Layer 4 Protocol = TCP (Connection-Oriented)

M M

TCP and OSI Transport Layer 4

IP Host A IP Host B

Router 1 Router 2

TCP Connection (Transport-Pipe)

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 6

TCP Protocol Functions

•  TCP transmission block
–  Called segment transmitted inside IP datagram's payload

field

•  ARQ Continuous Repeat Request
–  With piggy-backed acknowledgments

•  Error recovery
–  Positive & multiple acknowledgements using timeouts for

each segment
•  Sequence numbers based on byte position within in the TCP

stream

•  Flow control
–  Sliding window and dynamically adjusted window size

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 7

TCP Ports

•  TCP provides its service to higher layers
–  Through ports

•  Port numbers identify
–  Communicating processes in an IP host

•  Using port numbers
–  TCP can multiplex different layer-7 byte streams

•  Server processes are identified by
–  Well known port numbers : 0..1023
–  Controlled by IANA

•  Client processes use
–  Arbitrary port numbers > 1023
–  Better > 8000 because of registered ports

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 8

Well Known Ports
Some Well Known Ports
7 Echo
20 FTP (Data), File Transfer Protocol
21 FTP (Control)
23 TELNET, Terminal Emulation
25 SMTP, Simple Mail Transfer

Protocol
53 DNS, Domain Name Server
69 TFTP, Trivial File Transfer

Protocol
80 HTTP Hypertext Transfer Protocol
111 Sun Remote Procedure Call (RPC)
137 NetBIOS Name Service
138 NetBIOS Datagram Service
139 NetBIOS Session Service
161 SNMP, Simple Network

Management Protocol
162 SNMPTRAP
322 RTSP (Real Time Streaming

Protocol) Server

Some Registered Ports
1416 Novell LU6.2
1433 Microsoft-SQL-Server
1439 Eicon X25/SNA

Gateway
1527 Oracle
1986 Cisco License Manager
1998 Cisco X.25 service

(XOT)
5060 SIP (VoIP Signaling)
6000 \
..... > X Window System
6063 /

 ... etc.
 (see RFC1700)

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 9

IP

TCP Ports and TCP Connections

TCP

Server
Process 1

Server
Process 2

IP

TCP

IP

TCP

Client
Process 3

Client
Process 9

10.0.0.1 10.0.0.2 10.0.0.3

System
A

System
B

System
C

80 25 23 3333 1234

Port number
identifies
process

IP address
identifies IP host

Port

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 10

Example 1: TCP Port

IP (10.1.1.9)

TCP (80 / 110)

Server-Proc 1
WWW

Port 80

Server-Proc 2

POP3
Port 110

IP (10.1.1.1)

TCP (4711)

Client-Proc
Port 4711

DA:10.1.1.9
SA:10.1.1.1

DP:80
SP:4711

IP (10.1.1.2)

TCP (7312)

Client-Proc
Port 7312

DA:10.1.1.9
SA:10.1.1.2

DP:110
SP:7312

Server Host A Host B

IP Header TCP Header

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 11

TCP Sockets and TCP Connection

•  Client-server environment
–  Server-process has to maintain several TCP connections = TCP

streams (“flow”) to different targets at the same time
–  Hence a single port at the server side has to multiplex several virtual

connections

•  How to distinguish these connections?
–  Usage of so called sockets

•  Socket
–  Combination IP address and port number

•  Note: similar to the OSI "CEP" Connection Endpoint Identifier
•  E.g.: 10.1.1.2:80 [IP-Address : Port-Number]

•  Each TCP connection is uniquely identified by
–  A pair of sockets

•  Source-IP, Source-Port, Destination-IP, Destination-Port

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 12

Example 2: TCP Socket

IP (10.1.1.1)

TCP (4711)

Client-Proc
Port 4711

DA:10.1.1.9
SA:10.1.1.1

DP:80
SP:4711

IP (10.1.1.2)

TCP (7312)

Client-Proc
Port 7312

DA:10.1.1.9
SA:10.1.1.2

DP:80
SP:7312

Host A Host B

IP (10.1.1.9)

TCP (80)

Server-Proc 1
WWW

Port 80

Server
Connection 1:
Socket: 10.1.1.9 : 80
Socket: 10.1.1.1 : 4711

Connection 2:
Socket: 10.1.1.9 : 80
Socket: 10.1.1.2 : 7312

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 13

Example 3: TCP Socket

IP (10.1.1.9)

TCP (80)

Server-Proc 1
WWW

Port 80
Client-Proc 1

Port 4711

DA:10.1.1.9
SA:10.1.1.2

DP:80
SP:4711

IP (10.1.1.2)

TCP (4711 / 7312)

Client-Proc 2
Port 7312

DA:10.1.1.9
SA:10.1.1.2

DP:80
SP:7312

Server
Host

Connection 1:
Socket: 10.1.1.9 : 80
Socket: 10.1.1.2 : 4711

Connection 2:
Socket: 10.1.1.9 : 80
Socket: 10.1.1.2 : 7312

Connection 1:
Socket: 10.1.1.9 : 80
Socket: 10.1.1.2 : 4711

Connection 2:
Socket: 10.1.1.9 : 80
Socket: 10.1.1.2 : 7312

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 14

Agenda

•  TCP Fundamentals
–  Principles, Port and Sockets
–  Header Fields
–  Three Way Handshake
–  Windowing
–  Enhancements

•  TCP Performance
–  Slow Start and Congestion Avoidance
–  Fast Retransmit and Fast Recovery
–  TCP Window Scale Option and SACK Options
–  Explicit Congestion Notification (ECN)

•  UDP
•  RFC Collection
•  NAT

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 15

TCP Header

Destination Port Number Source Port Number

Options (variable length) Padding

PAYLOAD

 0 4 8 12 16 20 24 28 32

Sequence Number

Acknowledgement Number

Header
Length

P
S
H

R
S
T

S
Y
N

F
I
N

A
C
K

U
R
G

Reserved Window Size

TCP Checksum Urgent Pointer

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 16

TCP Header Entries (1)

•  Source and Destination Port
–  16 bit port number for source and destination process

•  Header Length
–  Indicates the length of the header given as a multiple 4 bytes
–  Necessary, because of the variable header length in case of options

•  Sequence Number (32 Bit)
–  Position number of the first byte of this segment

•  In relation to the byte stream flowing through a TCP connection
–  Wraps around to 0 after reaching 232 -1

•  Acknowledge Number (32 Bit)
–  Number of next byte expected by receiver
–  Acknowledges the correct reception of all bytes up to ACK-number

minus 1

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 17

TCP Header Entries (2)

•  SYN-Flag
–  Indicates a connection request
–  Sequence number synchronization

•  ACK-Flag
–  Acknowledge number is valid
–  Always set, except in very first segment

•  FIN-Flag
–  Indicates that this segment is the last
–  Other side must also finish the conversation

•  RST-Flag
–  Immediately kill the conversation
–  Used to refuse a connection-attempt

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 18

TCP Header Entries (3)

•  PSH-Flag
–  TCP should push the segment immediately to the

application without buffering
–  To provide low-latency connections
–  Often ignored

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 19

TCP Header Entries (4)

•  URG-Flag
–  Indicates urgent data
–  If set, the 16-bit "Urgent Pointer" field is valid

and points to the last byte of urgent data
–  There is no way to indicate the beginning of

urgent data (!)
–  Applications switch into the "urgent mode"
–  Used for quasi outband signaling

•  Urgent Pointer
–  Points to the last octet of urgent data

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 20

TCP Header Entries (5)

• Window (16 Bit)
–  Adjusts the send-window size of the other side
–  Flow control STOP and GO
–  Receiver-based flow control
–  Used with every segment
–  Sequence number of last byte allowed to send = ACK

number + window value seen in this segment

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 21

TCP Header Entries (6)

•  Checksum
–  Calculated over TCP header, payload and 12 byte pseudo

IP header
–  Pseudo IP header consists of source and destination IP

address, IP protocol type, and IP total length
–  Complete socket information is protected
–  Thus TCP can also detect IP errors

•  Options
–  Only MSS (Maximum Message Size) is used
–  Other options are defined in RFC1146, RFC1323 and

RFC1693
•  Pad

–  Ensures 32 bit alignment

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 22

Agenda

•  TCP Fundamentals
–  Principles, Port and Sockets
–  Header Fields
–  Three Way Handshake
–  Windowing
–  Enhancements

•  TCP Performance
–  Slow Start and Congestion Avoidance
–  Fast Retransmit and Fast Recovery
–  TCP Window Scale Option and SACK Options
–  Explicit Congestion Notification (ECN)

•  UDP
•  RFC Collection
•  NAT

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 23

TCP 3-Way-Handshake

ACK = ?
SEQ = 730 (random)

ACK = 401
SEQ = 731

ACK = 401
SEQ = 731

ACK = 731
SEQ = 400 (random)

ACK = ?
SEQ = ? (idle)

ACK = 731
SEQ = 401

ACK=? SEQ=730
 SYN

ACK=731 SEQ=400

 S
YN, ACK

ACK=401 SEQ=731
 ACK

SYNCHRONIZED

Client (Initiator) Server (Listener)

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 24

TCP Data Transfer

ACK = 401
SEQ = 731

ACK = 401
SEQ = 751

ACK = 401
SEQ = 801

ACK = 751
SEQ = 401

ACK = 731
SEQ = 401

ACK = 801
SEQ = 401

ACK=401 SEQ=731
 20 Bytes

ACK=751 SEQ=401

 0
 Bytes

ACK=401 SEQ=751
 50 Bytes

ACK=801 SEQ=401

 0
 Bytes

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 25

TCP Data Transfer
•  Acknowledgements are generated for all bytes which arrived in

sequence without errors
–  Positive acknowledgement

•  If a segment arrives out of sequence, no acknowledges are sent until
this "gap" is closed (old TCP)
–  Timeout will initiate a retransmission of unacknowledged data

•  Duplicates are also acknowledged (!)
–  Receiver cannot know why duplicate has been sent; maybe because of a lost

acknowledgement

•  The acknowledge number indicates the sequence number of the
next byte to be received

•  Acknowledgements are cumulative
–  Ack(N) confirms all bytes with sequence numbers up to N-1
–  Therefore lost acknowledgements are no problem

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 26

Cumulative Acknowledgement

Data(13) Seq=10

Data(15) Seq=23

Data(11) Seq=43

Data(9) Seq=54

Data(5) Seq=38

Ack = 23

Ack = 38

Ack = 43

Ack = 54

Ack = 63

Ack is lost

Cumulative Ack

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 27

TCP Duplicates, Lost Original (old TCP)

Data(13) Seq=10

Data(15) Seq=23

Data(11) Seq=43

Data(5) Seq=38

Data(5) Seq=38

Ack = 23

Ack = 38

Ack = 54

Data is lost ->
No Ack anymore

until gap is closed Repair by
retransmission
after RTO
timeout of
segment seq# 38 Cumulative Ack

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 28

Duplicate Acknowledgement (new TCP)

Data(13) Seq=10

Data(15) Seq=23

Data(11) Seq=43

Data(5) Seq=38

Data(5) Seq=38

Ack = 23

Ack = 38

Ack = 38

Ack = 54

Data is lost

Duplicate Ack

Cumulative Ack

Repair by
retransmission
after RTO
timeout of
segment seq# 38

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 29

TCP Duplicates, Lost Acknowledgement

Data(13) Seq=10

Data(15) Seq=23

Data(15) Seq=23

Ack = 23

Ack = 38

Ack = 38

Ack is lost
RTO timeout: retransmission

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 30

TCP Duplicates, Delayed Original

Data(13) Seq=10

Data(15) Seq=23

Data(15) Seq=23

Data(11) Seq=43

Data(5) Seq=38

Ack = 23

Ack = 43

Ack = 54 Cumulative Acks

No Ack anymore
until gap is closed

Ack = 54

Repair by
retransmission
after RTO
timeout of
segment seq# 38

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 31

TCP Retransmission Timeout

•  Retransmission timeout (RTO) will initiate a
retransmission of unacknowledged segments
–  High timeout results in long idle times

if an error occurs
–  Low timeout results in

unnecessary retransmissions
•  Constant timeout will never fit

–  Remember: RTT is a statistic value in the packet switching
world

•  Adaptive timeout is necessary
•  For TCP's performance a precise estimation of

the current RTT is crucial
–  TCP continuously measures RTT to adapt RTO

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 32

Retransmission Ambiguity Problem

•  If a segment has been retransmitted and an ACK
follows: Does this ACK belong to the
retransmission or to the original packet?
–  Could distort RTT measurement dramatically

•  Solution: Phil Karn's algorithm
–  Ignore ACKs of a retransmission for the RTT

measurement
–  And use an exponential backoff method

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 33

RTT Estimation
•  Originally a smooth RTT estimator was used (a low pass filter)

–  M denotes the observed RTT (which is typically imprecise because there is no
one-to-one mapping between data and ACKs)

–  R = αR+(1 − α)M with smoothing factor α=0.9
–  Finally RTO = β ·R with variance factor β=2

•  Initial smooth RTT estimator could not keep up with wide
fluctuations of the RTT
–  Led to too many retransmissions

•  Jacobson's suggested to take the RTT variance also into account
–  Err = M − A

•  The deviation from the measured RTT (M) and the RTT estimation (A)
–  A = A + g · Err

•  with gain g = 0.125
–  D = D + h (|Err| − D)

•  with h = 0.25
–  RTO = A + 4D

FYI

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 34

TCP Keepalive Timer

•  Note that absolutely no data flows during an idle
TCP connection!
–  Even for hours, days, weeks!

•  Usually needed by a server that wants to know
which clients are still alive
–  To close stale TCP sessions

• Many implementations provide an optional TCP
keepalive mechanism
–  Not part of the TCP standard!
–  Not recommended by RFC 1122 (TCP/IP hosts

requirements)
–  Minimum interval must be 2 hours

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 35

TCP Disconnect

ACK = 178
SEQ = 732

ACK = 178
SEQ = 733

ACK = 179
SEQ = 733

ACK = 733
SEQ = 178

ACK = 732
SEQ = 178

ACK = 733
SEQ = 179

ACK=178 SEQ=732
 FIN, ACK

SEQ=178 ACK=733

 ACK

ACK=179 SEQ=733
 ACK

SEQ=178 ACK=733

 FIN, ACK

ACK = 733
SEQ = 178

Session A->B closed

Session B->A closed

Host A Host B

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 36

Agenda

•  TCP Fundamentals
–  Principles, Port and Sockets
–  Header Fields
–  Three Way Handshake
–  Windowing
–  Enhancements

•  TCP Performance
–  Slow Start and Congestion Avoidance
–  Fast Retransmit and Fast Recovery
–  TCP Window Scale Option and SACK Options
–  Explicit Congestion Notification (ECN)

•  UDP
•  RFC Collection
•  NAT

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 37

Flow control: "Sliding Window"

•  TCP flow control is done with dynamic
windowing using the sliding window protocol

•  The receiver advertises the current amount of
octets it is able to receive
–  Using the window field of the TCP header
–  Values 0 through 65535

•  Sequence number of the last octet a sender may
send = received ack-number -1 + window size
–  The starting size of the window is negotiated during the

connect phase
–  The receiving process can influence the advertised

window, hereby affecting the TCP performance

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 38

Sliding Window: Initialization

45 46 47 48 49 50 51

[SYN] S=44 A=? W=8
[SYN, ACK] S=72 A=45 W=6

[ACK] S=45 A=73 W=8

Advertised Window
 (by the receiver)

bytes in the send-buffer
written by the application

process

System A System B

first byte that
can be send last byte that

can be send

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 39

Sliding Window: Principle

45 46 47 48 49 50 51 52 53 54 55 56

Advertised Window
 (by the receiver)

bytes to be sent
by the sender

Sent and already
acknowledged

Sent but not yet
acknowledged

Will send as
soon as possible

can't send until
window moves

....

Usable window

Sender's (System A) point of view after sender got {ACK=48, WIN=6}
from the receiver (System B)

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 40

Closing the Sliding Window

45 46 47 48 49 50 51 52 53 54 55 56

Advertised Window

Bytes 48,49,50
sent but not yet
acknowledged

....

[ACK] S=... A=51 W=3

45 46 47 48 49 50 51 52 53 54 55 56

Advertised
Window

....

Now the sender may send bytes 51, 52, 53. The receiver didn't open the window (W=3, right
edge remains constant) because of congestion. However, the remaining three bytes inside the

window are already granted, so the receiver cannot move the right edge leftwards.

received from the other side:

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 41

Flow Control -> STOP, Window Closed

45 46 47 48 49 50 51 52 53 54 55 56

Advertised
Window

....

Bytes 51,52,53
sent but not yet
acknowledged

45 46 47 48 49 50 51 52 53 54 55 56

received from the other side:

[ACK] S=... A=54 W=0

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 42

Opening the Window -> Flow Control GO

[ACK] S=... A=54 W=4

48 49 50 51 52 53 54 55 56 57 58 59

Advertised Window

....

received from the other side:

48 49 50 51 52 53 54 55 56 57 58

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 43

Increasing the Sliding Window

51 52 53 54 55 56 57 58 59 60 61 62

Advertised Window

Bytes 54,55,56
sent but not yet
acknowledged

....

[ACK] S=... A=56 W=5

51 52 53 54 55 56 57 58 59 60 61 62

Advertised Window

....

received from the other side:

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 44

TCP Persist Timer (1/2)

•  Deadlock possible:
Window is zero and
window-opening
ACK is lost!
–  ACKs are sent

unreliable!
–  Now both sides wait for

each other!

S=3120, payload: 1000 bytes

ACK, A=4120, W=0

ACK, A=4120, W=20000

Waiting until
window is being

opened

Waiting until
data is sent

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 45

TCP Persist Timer (2/2)

•  Solution: Sender may send
window probes:

–  Send one data byte beyond
window

–  If window remains closed then
this byte is not acknowledged—
so this byte keeps being
retransmitted

•  TCP sender remains in persist
state and continues
retransmission forever (until
window size opens)

–  Probe intervals are increased
exponentially between 5 and 60
seconds

–  Max interval is 60 seconds
(forever)

S=4121, payload: 1 byte

ACK, A=4122, W=20000

S=3120, payload: 1000 bytes

ACK, A=4120, W=0

S=4121, payload: 1 byte

ACK, A=4120, W=0

probe

probe

S=4121, payload: 1 byte
probe

ACK, A=4122, W=20000

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 46

Agenda

•  TCP Fundamentals
–  Principles, Port and Sockets
–  Header Fields
–  Three Way Handshake
–  Windowing
–  Enhancements

•  TCP Performance
–  Slow Start and Congestion Avoidance
–  Fast Retransmit and Fast Recovery
–  TCP Window Scale Option and SACK Options
–  Explicit Congestion Notification (ECN)

•  UDP
•  RFC Collection
•  NAT

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 47

TCP Enhancements

•  So far, only the very basic TCP procedures have been
mentioned

•  But TCP has much more magic built-in algorithms which
are essential for operation in today's IP networks:
–  "Slow Start" and “Congestion Avoidance”
–  "Fast Retransmit" and "Fast Recovery"
–  "Delayed Acknowledgements"
–  "The Nagle Algorithm“
–  Selective ACK (SACK), Window Scaling
–  Silly windowing avoidance
– 

•  Additionally, there are different implementations (Reno,
Vegas, …)
–  …

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 48

Interactive Traffic

Client Server

data byte

Ack

echo of data byte

Ack

Key pressed TCP received data,
acknowledges it, and
forwards the data to
the server application

Client application
shows data on the

display

Echo from server
application

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 49

Interactive Traffic with Delayed ACK

Client Server

data byte

echo of data byte
+ Ack

Ack

Key pressed TCP received data,
delayed
acknowledgement, and
forwards the data to the
server application

Client application
shows data on the

display

Echo plus Ack from
server application

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 50

Delayed ACKs
•  Goal: Reduce traffic, support

piggy-backed ACKs
•  Normally TCP, after receiving

data, does not immediately
send an ACK

•  Typically TCP waits
(typically) 200 ms and hopes
that layer-7 provides data
that can be sent along with
the ACK

Example:
Telnet and no Delayed ACK

Key press "A"

ACK
Echo "A"

Example:
Telnet with Delayed ACK

Key press "A"

ACK + Echo "A"
Wait 100 ms
on average

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 51

Nagle Algorithm

•  Goal: Avoid tinygrams on expensive (and usually slow)
WAN links

•  In RFC 896 John Nagle introduced an efficient algorithm
to improve TCP

•  Idea: In case of outstanding (=unacknowledged) data,
small segments should not be sent until the outstanding
data is acknowledged

•  In the meanwhile small amount of data (arriving from
Layer 7) is collected and sent as a single segment when
the acknowledgement arrives

•  This simple algorithm is self-clocking
–  The faster the ACKs come back, the faster data is sent

•  Note: The Nagle algorithm can be disabled!
–  Important for real-time services

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 52

Agenda

•  TCP Fundamentals
–  Principles, Port and Sockets
–  Header Fields
–  Three Way Handshake
–  Windowing
–  Enhancements

•  TCP Performance
–  Slow Start and Congestion Avoidance
–  Fast Retransmit and Fast Recovery
–  TCP Window Scale Option and SACK Options
–  Explicit Congestion Notification (ECN)

•  UDP
•  RFC Collection
•  NAT

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 53

Once again: The Window Size

•  The windows size (announced by the peer) indicates how
many bytes I may send at once
–  Without having to wait for acknowledgements

•  Before 1988, TCP peers tend to exploit the whole window
size at once after startup
–  Sending several segments in a sequence
–  Usually no problem for hosts
–  But led to frequent network congestions

•  Another problem:
–  In case of segment loss sender can use the window given by the

receiver but when window becomes closed the sender must wait until
retransmission timer times out

–  That means during that time sender may not fully use the offered
bandwidth of the network even if its available

•  TCP performance degradation

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 54

Congestion

•  Problem (buffer overflows) appears at bottleneck
links
–  Some intermediate router must queue packets
–  Queue overflow -> retransmission -> even more overflow!
–  Can't be solved by traditional receiver-imposed flow

control (using the window field)

Pipe model of a network path: Big fat pipes (high data rates) outside, a
bottleneck link in the middle. The green packets are sent at the maximum

achievable rate so that the interpacket delay is almost zero at the bottleneck
link; however there is a significant interpacket gap in the fat pipes.

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 55

How to Improve TCP Performance?
•  TCP should be "ACK-clocking"

–  New packets should be injected at the rate at which ACKs are
received

–  Duplicate ACKs are necessary to feel the ACK clocking in case of
some segments get lost.

•  Ideal case:
–  Rate at which new segments are injected into the network =

acknowledgment-rate of the other end
–  Requires a sensitive algorithm to catch the equilibrium point between

high data throughput and packet dropping due to queue overflow:
 Van Jacobson’s Slow Start and Congestion Avoidance

 (sender-imposed flow control)

•  Assumption:
–  Packet loss in today's networks are mainly caused by congestion but

not by bit errors on physical lines (optical, digital transmission)
•  Note: but not valid for WLAN

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 56

Once again: Duplicate ACKs

•  TCP receivers send duplicate
ACKs if segments are
missing
–  ACKs are cumulative (each ACK

acknowledges all data until
specified ACK-number)

–  Duplicate ACKs should not be
delayed

•  ACK=300 means: "I am still
waiting for packet with
SQNR=300"

SQNR=100
SQNR=200
SQNR=300
SQNR=400

ACK=200

ACK=300

ACK=300

SQNR=300

SQNR=500

ACK=300

…

Duplicate Ack

Duplicate Ack

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 57

Slow Start Parameters

•  Two important parameters are communicated
during the TCP three-way handshake
–  The maximum segment size (MSS)
–  The advertized window size W

•  Now Slow Start introduces the congestion
window (cwnd)
–  Only locally valid and locally maintained
–  Like window field stores a byte count

•  Rule:
–  The sender may transmit up to the minimum of the

congestion window and the advertised window

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 58

Idea of Slow Start
•  Upon new session, cwnd is

initialized with MSS (= 1 segment)
•  Allowed bytes to be sent:

–  Current window size = Minimum (W,
cwnd)

•  Each time an ACK is received,
cwnd is incremented by 1 segment
–  That is, cwnd doubles every RTT (!)
–  Exponential increase!

cwnd=1 MSS Data

Ack
cwnd=2 MSS

cwnd=4 MSS

cwnd=4 MSS

…

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 59

Graphical Illustration (1/4)

Se
nd

er

R
ec

ei
ve

r

D1
Se

nd
er

R
ec

ei
ve

r

D1

Se
nd

er

R
ec

ei
ve

r

D1

Se
nd

er

R
ec

ei
ve

r
D1

Se
nd

er

R
ec

ei
ve

r

A1

Se
nd

er

R
ec

ei
ve

r

A1

Se
nd

er

R
ec

ei
ve

r

A1

Se
nd

er

R
ec

ei
ve

r

A1

Se
nd

er

D2

R
ec

ei
ve

r

Se
nd

er

D3

R
ec

ei
ve

r

D2

t=0

t=1

t=2

t=3

t=4

t=5

t=6

t=7

t=8

t=9

cwnd=1

cwnd=2

cwnd=1

cwnd=1

cwnd=1

cwnd=1

cwnd=1

cwnd=1

cwnd=1

cwnd=2

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 60

Graphical Illustration (2/4)

Se
nd

er

R
ec

ei
ve

r

D2
Se

nd
er

R
ec

ei
ve

r

D3

Se
nd

er

R
ec

ei
ve

r

D3

Se
nd

er

R
ec

ei
ve

r

Se
nd

er

R
ec

ei
ve

r

A2

Se
nd

er

R
ec

ei
ve

r

Se
nd

er

R
ec

ei
ve

r

A3

Se
nd

er

R
ec

ei
ve

r

Se
nd

er

D6

R
ec

ei
ve

r

Se
nd

er

D4

R
ec

ei
ve

r

t=10

t=11

t=12

t=13

t=14

t=15

t=16

t=17

t=18

t=19

D3

D2

A3 A2

A3 A2

A3 A2

D5 D4

D5 D4

D6 D5 D4 D7

cwnd=3

cwnd=4

cwnd=4

cwnd=2

cwnd=2

cwnd=2

cwnd=2

cwnd=2

cwnd=4

cwnd=2

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 61

Graphical Illustration (3/4)

Se
nd

er

R
ec

ei
ve

r

D6
Se

nd
er

R
ec

ei
ve

r

Se
nd

er

R
ec

ei
ve

r

Se
nd

er

R
ec

ei
ve

r

Se
nd

er

R
ec

ei
ve

r

A4 Se
nd

er

R
ec

ei
ve

r

Se
nd

er

R
ec

ei
ve

r

Se
nd

er

R
ec

ei
ve

r

Se
nd

er

R
ec

ei
ve

r

Se
nd

er

R
ec

ei
ve

r

t=20

t=21

t=22

t=23

t=24

t=25

t=26

t=27

t=28

t=29

D5

D6

A6

A5 A4

A5 A4 A6

A5 A4 A6

A5 A6

D8

D9 D8

D10 D9 D8

D10 D9 D8 D11

D10 D9 D11

A8

D10 D11

A9 A8

D7

D7

D7

A7

A7

A7

A7

D12

D12 D13

cwnd=5

cwnd=6

cwnd=7

cwnd=8

cwnd=4

cwnd=4

cwnd=4

cwnd=4

cwnd=8

cwnd=8

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 62

Graphical Illustration (4/4)

•  TCP is "self-clocking"
–  The spacing between the ACKs is the same as between the data segments
–  The number of ACKs is the same as the number of data segments

•  In our example, cwnd=8 is the optimum
–  This is the bandwidth-delay product (8 = RTT x BW)
–  In other words: the pipe can accept 8 segments per round-trip-time

Se
nd

er

R
ec

ei
ve

r

Se
nd

er

R
ec

ei
ve

r

t=30

t=31

D11 D12

A10 A9

D13 D14

A8

D12 D13

A11 A10

D14 D15

A9 A8
cwnd=8 => Pipe is full (ideal situation) –
cwnd should not be increased anymore!

cwnd=8

cwnd=8

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 63

Performance Limitation of all ARQ Protocols

•  By “Bandwidth-Delay Product” = “Channel Volume”
•  Continuous RQ with sliding window

–  The sender's window must be large enough to avoid stopping of sending

•  Channel volume maybe increased
–  By delays caused by buffers
–  Limited signal speed
–  Bandwidth

1

1) Doubled bandwidth:

2 3 4 5 6 7 8

4 3 2 1 8 7 6 5

2) Doubled RTT:
Additional capacity

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 64

End of Slow Start -> Congestion

•  Slow start leads to an exponential increase of
the data rate until some network bottleneck is
congested and some segments get dropped!

•  Congestion can be detected by the sender
through timeouts or duplicate
acknowledgements

•  Slow start reduces its sending rate with the help
of a companion algorithm, called ”Congestion
Avoidance"

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 65

Congestion Avoidance (1)

•  Upon congestion (=duplicate ACKs)
–  Reduce the sending rate by half and now increase the rate

linearly until duplicate ACKs are seen again (and repeat
this continuously)

•  Congestion Avoidance requires TCP to maintain
another variable
–  Slow Start Threshold" (ssthresh)

–  ssthresh is set to half the current window size in case a
duplicate ACK is received

•  Initially, ssthresh is set to TCP’s maximum possible MSS (i.e.
65,535 bytes)

•  Note: ssthresh marks a safe window size because congestion
occurred at a window size of 2 x ssthresh

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 66

Congestion Avoidance (2)

•  If the congestion is indicated by
–  A timeout:

•  cwnd is set to 1 -> forcing slow start again
–  A duplicate ACK:

•  cwnd is set to ssthresh (= 1/2 current window size)

•  cwnd ≤ ssthresh:
–  Slow start, doubling cwnd every round-trip time
–  Exponential growth of cwnd

•  cwnd > ssthresh:
–  Congestion avoidance, cwnd is incremented

by MSS × MSS / cwnd every time an ACK is received
–  linear growth of cwnd

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 67

Slow Start and Congestion Avoidance

2

4

6

8

10

12

14

16

18

20

cwnd

round-trip times

ACK missing
Timeout

Timeout

ssthresh = 8

Duplicate ACK

ssthresh = 6

cwnd=16

cwnd=12

High Congestion: Every segment
gets lost from a certain time on

Low Congestion: Only single
segment gets lost

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 68

Slow Start and Congestion Avoidance

cwnd / MSS

t / RTT 1 2 3 4 5 6 7 8 9

2

4

6
8

10

12
14

16

18

20

Duplicate ACK received
at cwnd = 32

Duplicate ACK received
at cwnd = 20

Congestion Avoidance

Congestion Avoidance

 Duplicate ACK

Duplicate ACK

Low Congestion: Only some
segments get lost

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 69

The Combined Algorithm

New Session: initialize cwnd = 1 MSS, ssthresh = 65535

Determine actual window size "AWS" = Min (W, cwnd)
 ** send AWS bytes **

Retransmission
timeout expired

Duplicate ACKs
received

Data
acknowledged

Increment cwnd
 by 1/cwnd for

each ACK received

cwnd = 1
ssthresh = AWS/2

ssthresh = AWS/2
(but at least 2 MSS)

(cwnd > ssthresh) ?

yes no

Increment cwnd
by one for each
ACK received.

FYI

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 70

Long Term View of TCP Throughput

 Time

Relative
Throughput

Rate

ssthresh

Duplicate Ack Duplicate Ack Duplicate Ack Duplicate Ack

slow start congestion
avoidance

congestion
avoidance

congestion
avoidance

max.
achievable
throughput

"Wave Effect"

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 71

Real TCP Performance

•  TCP always tries to minimize the data delivery
time

•  Good and proven self-regulating mechanism to
avoid congestion

•  TCP is "hungry but fair"
–  Essentially fair to other TCP applications
–  Unreliable traffic (e. g. UDP) is not fair to TCP…

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 72

Agenda

•  TCP Fundamentals
–  Principles, Port and Sockets
–  Header Fields
–  Three Way Handshake
–  Windowing
–  Enhancements

•  TCP Performance
–  Slow Start and Congestion Avoidance
–  Fast Retransmit and Fast Recovery
–  TCP Window Scale Option and SACK Options
–  Explicit Congestion Notification (ECN)

•  UDP
•  RFC Collection
•  NAT

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 73

"Fast Retransmit"

•  Note that duplicate ACKs are also sent upon
packet reordering

•  Therefore TCP waits for 3 duplicate ACKs before
it really assumes congestion
–  Immediate retransmission (don't wait for timer expiration)

•  This is called the Fast Retransmit algorithm

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 74

"Fast Recovery"

•  After Fast Retransmit TCP continues with Congestion
Avoidance
–  ssthresh is set to half the current window size
–  cwnd is set to ssthresh plus 3 times the maximum segment size.
–  Does NOT fall back to Slow Start

•  Every another duplicate ACK tells us that a "good"
segment has been received by the peer
–  cwnd = cwnd + MSS
–  => Send one additional segment

•  As soon a normal ACK is received
–  cwnd = ssthresh = Minimum (W, cwnd)/2

•  This is called Fast Recovery

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 75

Fast Retransmit and Fast Recovery

2

4

6

8

10

12

14

16

18

20

cwnd

round-trip times

ssthresh = 8

 1st duplicate Ack

 cwnd = 10

cwnd=12

ssthresh = 7

 3rd duplicate Ack:
indication for

single packet failure
single packet repair

further duplicate Acks

 cwnd = 7

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 76

All Together!

New Session: initialize cwnd = 1 MSS, ssthresh = 65535

Determine actual window size "AWS" = Min (W, cwnd)
 ** send AWS bytes **

Retransmission
timeout expired

3 duplicate ACKs
received

Data
acknowledged

Increment cwnd
 by 1/cwnd for

each ACK received

cwnd = 1
ssthresh = AWS/2

ssthresh = AWS/2
(but at least 2 MSS),

retransmit the segment,
cwnd = ssthresh+3 MSS,

for each 3+nth duplicate ACK
increase cwnd by 1 MSS;

then set cwnd=ssthresh upon
first "normal" ACK

(cwnd > ssthresh) ?

yes no

Increment cwnd
by one for each
ACK received.

Slow Start, Congestion Avoidance,
Fast Retransmit, and Fast Recovery

FYI

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 77

Agenda

•  TCP Fundamentals
–  Principles, Port and Sockets
–  Header Fields
–  Three Way Handshake
–  Windowing
–  Enhancements

•  TCP Performance
–  Slow Start and Congestion Avoidance
–  Fast Retransmit and Fast Recovery
–  TCP Window Scale Option and SACK Options
–  Explicit Congestion Notification (ECN)

•  UDP
•  RFC Collection
•  NAT

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 78

TCP Header Window Field

Source Port Number Destination Port Number

0 15 16 31

Sequence Number

Acknowledgement Number

Header
Length

U
R
G

A
C
K

P
S
H

R
S
T

S
Y
N

F
I
N Window Size

TCP Checksum Urgent Pointer

20
bytes

TCP Options (if any)
 (PAD)

Data (if any)
...........

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 79

TCP Options

• Window-scale option
–  a maximum segment size of 65,535 octets is inefficient for

high delay-bandwidth paths
–  the window-scale option allows the advertised window size

to be left-shifted (i.e. multiplication by 2)
–  enables a maximum window size of 2^30 octets !
–  negotiated during connection establishment

•  SACK (Selective Acknowledgement)
–  if the SACK-permitted option is set during connection

establishment, the receiver may selectively acknowledge
already received data even if there is a gap in the TCP
stream (Ack-based synchronization maintained)

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 80

Agenda

•  TCP Fundamentals
–  Principles, Port and Sockets
–  Header Fields
–  Three Way Handshake
–  Windowing
–  Enhancements

•  TCP Performance
–  Slow Start and Congestion Avoidance
–  Fast Retransmit and Fast Recovery
–  TCP Window Scale Option and SACK Options
–  Explicit Congestion Notification (ECN)

•  UDP
•  RFC Collection
•  NAT

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 81

What's Happening in the Network?

•  Tail-drop queuing is the standard dropping
behavior in FIFO queues
–  If queue is full all subsequent packets are dropped

New arriving packets are dropped
("Tail drop")

Full queue

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 82

Tail-drop Queuing (cont.)

•  Another representation:
Drop probability versus queue depth

100%

0%
Queue Depth

D
ro

p
Pr

ob
ab

ili
ty

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 83

Tail-drop Problems

•  No flow differentiation
•  TCP starvation upon multiple packet drop

•  TCP receivers may keep quiet (not even send duplicate ACKs)
and sender falls back to slow start
– worst case!

•  TCP fast retransmit and/or selective acknowledgement may help

•  TCP synchronization

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 84

TCP Synchronization
•  Tail-drop drops many segments of different sessions at the same

time
•  All these sessions experience duplicate ACKs and perform

synchronized congestion avoidance

RTT

Relative
Throughput

Rate
(Window size)

Duplicate Ack Duplicate Ack Duplicate Ack Duplicate Ack

slow start congestion
avoidance

congestion
avoidance

congestion
avoidance

max. achievable throughput

Average link
utilization

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 85

Random Early Detection (RED)

•  Utilizes TCP specific behavior
–  TCP dynamically adjusts traffic throughput by reducing

window size
•  in order to accommodate to the minimal available bandwidth

(bottleneck)

•  "Missing" (dropped) TCP segments cause
window size reduction!
–  Idea: Start dropping TCP segments before queuing "tail-

drops" occur
–  Make sure that "important" traffic is not dropped

•  RED randomly drops segments before queue is
full
–  Drop probability increases linearly with queue depth

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 86

RED

•  Important RED parameters
–  Minimum threshold
–  Maximum threshold
–  Average queue size (running average)

•  RED works in three different modes
–  No drop

•  If average queue size is between 0 and minimum threshold
–  Random drop

•  If average queue size is between minimum and maximum
threshold

–  Full drop
•  If average queue size is equal or above maximum threshold = "tail-

drop"

FYI

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 87

RED Parameters

Drop probability

Mark probability

100%

10%

min-thresh max-thresh

Average
queue size

(e.g. 20) (e.g. 40)

Tail-drop (full drop)

(packets)

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 88

Weighted RED (WRED)

•  Drops less important packets more aggressively
than more important packets

•  Importance based on:
–  IP precedence 0-7 (ToS byte)
–  DSCP value 0-63 (ToS byte)

•  Classified traffic can be dropped based on the
following parameters
–  Minimum threshold
–  Maximum threshold
–  Mark probability denominator

(Drop probability at maximum threshold)

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 89

WRED Parameters

Drop probability

100%

10%

min-thresh
Prec 4

max-thresh

Average
queue size

Tail-drop (full drop)

(packets)
min-thresh

Prec 3
min-thresh

Prec 0

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 90

RED Problems

•  RED performs "Active Queue
Management" (AQM) and drops packets before
congestion occurs
–  But an uncertainty remains whether congestion will occur

at all
•  RED is known as "difficult to tune"

–  Goal: Self-tuning RED
–  Running estimate weighted moving average (EWMA) of

the average queue size

FYI

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 91

Explicit Congestion Notification (ECN)

•  Traditional TCP stacks only use segment loss as indicator to reduce
window size

–  But some applications are sensitive to packet loss and delays
•  Routers with ECN enabled mark packets when the average queue depth

exceeds a threshold
–  Instead of randomly dropping them
–  Hosts may reduce window size upon receiving ECN-marked packets

•  Least significant two bits of IP TOS used for ECN

ECT CE IP TOS Field

DSCP ECN

Obsolete (but widely used) RFC 2481
notation of these two bits:

 ECT ECN-Capable Transport
 CE Congestion Experienced

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 92

Usage of CE and ECT
•  RFC 3168 redefines the use of the two bits: ECN-supporting hosts should

set one of the two ECT code points
–  ECT(0) or ECT(1)
–  ECT(0) SHOULD be preferred

•  Routers that experience congestion set the CE code point in packets with
ECT code point set (otherwise: RED)

•  If average queue depth is exceeding max-threshold: Tail-drop
•  If CE already set: forward packet normally (abuse!)

0 0
0 1
1 0
1 1

Non ECN-capable transport
ECT(1)
ECT(0)

Codepoints for ECN-capable transport

CE codepoint

ECN Field

FYI

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 93

CWR and ECE
•  RFC 3168 also introduced two new TCP flags

–  ECN Echo (ECE)
–  Congestion Window Reduced (CWR)

•  Purpose:
–  ECE used by data receiver to inform the data sender when a CE packet has been

received
–  CWR flag used by data sender to inform the data receiver that the congestion window

has been reduced

IP TOS: ECT IP TOS: CE

TCP: ECE TCP: ECE

Congestion

IP TOS: ECT

TCP: ECE

TCP: CWR TCP: CWR TCP: CWR

Header
Length

P
S
H

R
S
T

S
Y
N

F
I
N

A
C
K

U
R
G

Reserved Window Size
E
C
E

C
W
R

Part of TCP header:

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 94

Note

•  CE is only set when average queue depth
exceeds a threshold
–  End-host would react immediately
–  Therefore ECN is not appropriate for short term bursts

(similar as RED)
•  Therefore ECN is different as the related features

in Frame Relay or ATM which acts also on short
term (transient) congestion

FYI

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 95

Agenda

•  TCP Fundamentals
–  Principles, Port and Sockets
–  Header Fields
–  Three Way Handshake
–  Windowing
–  Enhancements

•  TCP Performance
–  Slow Start and Congestion Avoidance
–  Delay Bandwidth Product
–  Fast Retransmit and Fast Recovery
–  TCP Window Scale Option and SACK Options
–  Explicit Congestion Notification (ECN)

•  UDP
•  RFC Collection
•  NAT

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 96

IP transmission over

ATM
RFC 1483

IEEE 802.2
RFC 1042

X.25
RFC 1356

FR
RFC 1490

PPP
RFC 1661

TCP/IP Protocol Suite

Physical

Link

Network

Transport

Session

Presentation

Application SMTP HTTP
HTTPS FTP Telnet

SSH DNS DHCP
(BootP) TFTP etc.

TCP
(Transmission Control Protocol)

UDP
(User Datagram

Protocol)

IP (Internet Protocol)
ICMP

ARP RARP

 Routing Protocols

 RIP OSPF
 BGP

(US-ASCII and MIME)

(RPC)

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 97

UDP (User Datagram Protocol, RFC 768)

•  UDP is a connectionless layer 4 service
(datagram service)

•  Layer 3 Functions are extended by port
addressing and a checksum to ensure integrity

•  UDP uses the same port numbers as TCP (if
applicable)

•  Less complex than TCP, easier to implement

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 98

4 4

Layer 4 Protocol = UDP (Connectionless)

M M

UDP and OSI Transport Layer 4

IP Host A IP Host B

Router 1 Router 2

UDP Connection (Transport-Pipe)

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 99

UDP Usage

•  UDP is used
–  When the overhead of a connection oriented service is

undesirable
•  E.g. for short DNS request/reply

–  When the implementation has to be small
•  e.g. BootP, TFTP, DHCP, SNMP

–  Where retransmission of lost segments makes no sense
•  Voice over IP
•  Multimedia streams

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 100

UDP Header

Destination Port Number Source Port Number

PAYLOAD

 0 4 8 12 16 20 24 28 32

UDP Length UDP Checksum

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 101

Important UDP Port Numbers
–  7 Echo
–  53 DOMAIN, Domain Name Server
–  67 BOOTPS, Bootstrap Protocol Server
–  68 BOOTPC, Bootstrap Protocol Client
–  69 TFTP, Trivial File Transfer Protocol
–  79 Finger
–  111 SUN RPC, Sun Remote Procedure Call
–  137 NetBIOS Name Service
–  138 NetBIOS Datagram Service
–  161 SNMP, Simple Network Management Protocol
–  162 SNMP Trap
–  322 RTSP (Real Time Streaming Protocol) Server
–  520 RIP
–  5060 SIP (VoIP Signaling)
–  xxxx RTP (Real-time Transport Protocol)
–  xxxx+1 RTCP (RTP Control Protocol)

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 102

Agenda

•  TCP Fundamentals
–  Principles, Port and Sockets
–  Header Fields
–  Three Way Handshake
–  Windowing
–  Enhancements

•  TCP Performance
–  Slow Start and Congestion Avoidance
–  Delay Bandwidth Product
–  Fast Retransmit and Fast Recovery
–  TCP Window Scale Option and SACK Options
–  Explicit Congestion Notification (ECN)

•  UDP
•  RFC Collection
•  NAT

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 103

RFCs

•  0761 - TCP
•  0813 - Window and Acknowledgement Strategy in TCP
•  0879 - The TCP Maximum Segment Size
•  0896 - Congestion Control in TCP/IP Internetworks
•  1072 - TCP Extension for Long-Delay Paths
•  1106 - TCP Big Window and Nak Options
•  1110 - Problems with Big Window
•  1122 - Requirements for Internet Hosts -- Com. Layer
•  1185 - TCP Extension for High-Speed Paths
•  1323 - High Performance Extensions (Window Scale)

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 104

RFCs

•  2001 - Slow Start and Congestion Avoidance (Obsolete)
•  2018 - TCP Selective Acknowledgement (SACK)
•  2147 - TCP and UDP over IPv6 Jumbograms
•  2414 - Increasing TCP's Initial Window
•  2581 - TCP Slow Start and Congestion Avoidance

(Current)
•  2873 - TCP Processing of the IPv4 Precedence Field
•  3168 - TCP Explicit Congestion Notification (ECN)

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 105

Agenda

•  TCP Fundamentals
•  TCP Performance
•  UDP
•  RFC Collection
•  NAT

–  NAT Basics
–  NAPT
–  Virtual Server
–  Complex NAT
–  DNS Aspects
–  Load Balancing
–  RFCs

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 106

Private Address Range - RFC 1918

•  Three blocks of address ranges are reserved for
addressing of private networks
–  10.0.0.0 - 10.255.255.255 (10/8 prefix)
–  172.16.0.0 - 172.31.255.255 (172.16/12 prefix)
–  192.168.0.0 - 192.168.255.255 (192.168/16 prefix)

•  NAT (Network Address Translation)
–  Performs translation between private addresses and

globally unique addresses
–  Was originally developed as an interim solution to combat

IPv4 address depletion by allowing IP addresses to be
reused by several hosts

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 107

Network Address Translation (NAT)

•  NAT
–  First explained in RFC 1631

•  The address reuse solution is to place Network Address
Translators (NAT) at the borders of stub domains

•  Each NAT box has a table consisting of pairs of local IP addresses
and globally unique addresses performing address translation
when passing IP Datagram's between a stub domain and the
Internet and vice versa

•  The IP addresses inside the stub domain are not globally unique,
they are reused in other domains, thus solving the address
depletion problem

•  In most cases private addresses (RFC 1918) are used inside the
stub domain (10.0.0.0/8, 172.16.0.0/16, 192.168.0.0/16)

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 108

Reasons for NAT

• Mitigate Internet address depletion
–  As temporary solution before IPv6 is there

•  Save global addresses (and money)
–  NAT is most often to map the nonroutable private address

spaces defined by RFC 1918 to an official address
•  10.0.0.0/8, 172.16.0.0/16, 192.168.0.0/16

•  Conserve internal address plan
•  TCP load sharing

–  Several physical servers are hided behind one IP address
and traffic to them is balanced

•  Hide internal topology
–  Security aspect

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 109

Terms (1)

193. 99.99.1

193.99.99.4
Global addresses

193. 99.99.2

193. 99.99.3

(NAT not necessary in this case)

Inside
(Stub Domain)

Outside
(e.g. Internet)

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 110

Terms (2)

10.1.1.1

10.1.1.2

10.1.1.3
10.1.1.4

Local addresses

NAT

10.1.1.1
10.1.1.2
10.1.1.3
10.1.1.4

193.99.99.1

193.99.99.4

193.99.99.2
193.99.99.3

Local
IP address

Global
IP address

Static one-to-one mapping
(NAT-Binding) is
maintained by router-
internal static NAT–Table

Inside
(Stub Domain)

Outside
(e.g. Internet)

Globally unique
 addresses

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 111

Basic Principle (1)

10.1.1.1 193.9.9.1
10.1.1.2 193.9.9.2

....

Local IP Global IP

10.1.1.1

198.5.5.55 DA

SA 193.9.9.1

198.5.5.55 DA

SA

10.1.1.1
NAT

198.5.5.55
193.9.9.99

10.1.1.2

NAT

Simple Static
NAT Table

Binding is maintained by static NAT–Table

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 112

Basic Principle (2)

10.1.1.1 193.9.9.1
10.1.1.2 193.9.9.2

....

Local IP Global IP

10.1.1.1

198.5.5.55

DA

SA

193.9.9.1

198.5.5.55

DA

SA

10.1.1.1
NAT

198.5.5.55
193.9.9.99

10.1.1.2

NAT

Simple Static
NAT Table

Binding is maintained by static NAT–Table

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 113

NAT Tasks and Behaviour

–  Modify IP addresses according to NAT table

–  But also must modify the IP checksum and the TCP checksum

–  Must also look out for ICMP and modify the places where the IP
address appears

–  There may be other places, where modifications must be done

•  E.g. FTP, NetBIOS over TCP/IP, SNMP, DNS, Kerberos, X-Windows,
SIP, H.323, IPsec, IKE…

–  The sender and receiver (should) remain unaware that NAT is taking

place

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 114

NAT Binding Possibilities

•  Static (“Fixed Binding”)
–  In case of one-to-one mapping of local to global addresses

•  Dynamic (“Binding on the fly”)
–  In case of sharing a pool of global addresses
–  Connections initiated by private hosts are assigned a global address

from the pool
–  As long as the private host has an outgoing connection, it can be

reached by incoming packets sent to this global address
–  After the connection is terminated (or a timeout is reached), the

binding expires, and the address is returned to the pool for reuse
–  Is more complex because state must be maintained, and connections

must be rejected when the pool is exhausted
–  Unlike static binding, dynamic binding enables address reuse,

reducing the demand for globally unique addresses.

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 115

Scenario Dynamic Binding

10.1.1.1

10.1.1.2

10.1.1.3
10.1.1.4

NAT

10.1.1.1
10.1.1.2
10.1.1.3
10.1.1.4

193.99.99.1
193.99.99.2

Local addresses

Inside Outside

Binding is maintained by
dynamic NAT–Table
Note: a connection state or timer
must be maintained per mapping

Globally unique
 addresses

Local
IP address

Global
IP address

Currently not possible

Currently not possible

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 116

Agenda

•  TCP Fundamentals
•  TCP Performance
•  UDP
•  RFC Collection
•  NAT

–  NAT Basics
–  NAPT
–  Virtual Server
–  Complex NAT
–  DNS Aspects
–  Load Balancing
–  RFCs

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 117

Overloading (NAPT)

•  Common problem:
–  Many hosts inside initiating connections to the

outside world
–  But only one or a few inside-global addresses

available

•  Solution:
–  Many-to-one Translation with NAPT (Network

Address Port Translation)
–  Usable in context of TCP and UDP sessions
–  Aka "Overloading Global Addresses"
–  Aka "PAT„ (Port Address Translation)

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 118

NAPT Example (1)

10.1.1.1:1034

65.38.12.9:80 DA

SA 10.1.1.1

10.1.1.2
10.1.1.2:1034

65.38.12.9:80 DA

SA

173.3.8.1:2137

65.38.12.9:80 DA

SA

173.3.8.1:2138

65.38.12.9:80 DA

SA

65.38.12.9

10.1.1.1:1034

10.1.1.2:1034

173.3.8.1:2137

173.3.8.1:2138

Extended Translation Table

Global Local

TCP

TCP

Prot.

NAPT

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 119

10.1.1.1:1034

65.38.12.9:80

DA

SA 10.1.1.1

10.1.1.2

10.1.1.2:1034

65.38.12.9:80

DA

SA

173.3.8.1:2137

65.38.12.9:80

DA

SA

173.3.8.1:2138

65.38.12.9:80

DA

SA

65.38.12.9

NAPT Example (2)

Extended Translation Table

10.1.1.1:1034

10.1.1.2:1034

173.3.8.1:2137

173.3.8.1:2138

Global Local

TCP

TCP

Prot.

NAPT

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 120

Agenda

•  TCP Fundamentals
•  TCP Performance
•  UDP
•  RFC Collection
•  NAT

–  NAT Basics
–  NAPT
–  Virtual Server
–  Complex NAT
–  DNS Aspects
–  Load Balancing
–  RFCs

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 121

Virtual Server Table

•  Problem:
–  How to reach an inside server from the outside
–  NAPT/NAT let IP datagram's (with UDP or TCP

segments as payload) from to outside only in if a
binding is found

–  But server waits for connections from the outside
hence cannot install binding in the NAPT/NAT device

•  Solution:
–  Virtual Server Table
–  Creating manually a static binding in the NAPT/NAT

device to forward IP datagram's to the real inside
server

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 122

10.1.1.1:25

65.38.12.9:1039

DA

SA 10.1.1.1

10.1.1.2

10.1.1.2:80

65.38.12.9:1040

DA

SA

173.3.8.1:25

65.38.12.9:1039

DA

SA

173.3.8.1:80

65.38.12.9:1040

DA

SA

65.38.12.9

Virtual Server Table Example

Extended Translation Table

10.1.1.1:25

10.1.1.2:80

173.3.8.1:25

173.3.8.1:80

Global Local

TCP

TCP

Prot.

NAPT

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 123

Agenda

•  TCP Fundamentals
•  TCP Performance
•  UDP
•  RFC Collection
•  NAT

–  NAT Basics
–  NAPT
–  Virtual Server
–  Complex NAT
–  DNS Aspects
–  Load Balancing
–  RFCs

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 124

Terms Used in complex NAT Devices
–  Local versus global address

•  Reflects area of usage (inside or outside)

–  Inside versus outside world
•  Reflects the origin

Inside Network Outside Network

NAT Inside Local

Outside Local DA

SA Inside Global

Outside Global DA

SA

Outside Global

Inside Global DA

SA Outside Local

Inside Local DA

SA

FYI

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 125

Static NAT Example with New Terms

10.1.1.1

10.1.1.2

10.1.1.3
10.1.1.4

Local addresses

NAT

Inside
(Stub Domain)

Outside
(e.g. Internet)

Inside Local
IP address

Inside Global
IP address

Binding is maintained by
static NAT–Table

Globally unique
 addresses

10.1.1.1
10.1.1.2
10.1.1.3
10.1.1.4

193.99.99.1

193.99.99.4

193.99.99.2
193.99.99.3

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 126

Basic Principle (1a) with New Terms
Inside Address Translation

10.1.1.1 193.9.9.1
10.1.1.2 193.9.9.2

....

Inside Local IP Inside Global IP

10.1.1.1

198.5.5.55 DA

SA 193.9.9.1

198.5.5.55 DA

SA

10.1.1.1
NAT

198.5.5.55
193.9.9.99

10.1.1.2

NAT

Simple NAT Table

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 127

Basic Principle (1b) with New Terms
Inside Address Translation

10.1.1.1 193.9.9.1
10.1.1.2 193.9.9.2

....

Inside Local IP Inside Global IP

Simple NAT Table

10.1.1.1

198.5.5.55

DA

SA

193.9.9.1

198.5.5.55

DA

SA

10.1.1.1
NAT

198.5.5.55
193.9.9.99

10.1.1.2

NAT

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 128

Overlapping Networks

= Same addresses are used
locally and globally

What can
happen?

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 129

Outside Address Translation

9.3.1.2
193.9.9.2

x.x.x.x DA

SA

Hidden 9.0.0.0
network

9.3.1.8

193.9.9.2 DA

SA

Packet came from
"true" 9.0.0.0

network

10.0.0.8

9.3.1.2 DA

SA

9.3.1.8

9.3.1.2 193.9.9.2 10.0.0.8 9.3.1.8

Outside Local Inside Global Inside Local Outside Global

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 130

Agenda

•  TCP Fundamentals
•  TCP Performance
•  UDP
•  RFC Collection
•  NAT

–  NAT Basics
–  NAPT
–  Virtual Server
–  Complex NAT
–  DNS Aspects
–  Load Balancing
–  RFCs

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 131

DNS Problem (1)

9.3.1.2

"Jahoo"
9.3.1.8

DNS server
195.44.33.11

DNS request for host "Jahoo"
SA=9.3.1.2 / DA=195.44.33.11

Hidden 9.3.1.0/24
network Legal 9.3.1.0/24

network

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 132

DNS Problem (2)

DNS server
195.44.33.11

DNS request for host "Jahoo"
SA=178.12.99.3 / DA=195.44.33.11

9.3.1.2

"Jahoo"
9.3.1.8

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 133

DNS Problem (3)

DNS server
195.44.33.11

DNS reply: host "Jahoo" is 9.3.1.8
SA=195.44.33.11 / DA= 178.12.99.3

!OVERLAPPING ALERT!
We cannot tell our hosts

that "Jahoo" has IP address 9.3.1.8...
They would think that Jahoo is inside

and would try a direct delivery...!!!

9.3.1.2

"Jahoo"
9.3.1.8

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 134

DNS Problem (4)

DNS server
195.44.33.11

DNS reply: host "Jahoo" is 7.7.7.7
SA= 195.44.33.11 / DA=9.3.1.2

Now my hosts forward
traffic to me as Default
Gateway to the Internet

9.3.1.2

"Jahoo"
9.3.1.8

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 135

DNS Problem (5)

DNS server
195.44.33.11

Message for host "Jahoo"
SA=9.3.1.2 / DA=7.7.7.7

DA=7.7.7.7...?
 Must be translated

9.3.1.2

"Jahoo"
9.3.1.8

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 136

DNS Problem (6)

DNS server
195.44.33.11

Message for host "Jahoo"
SA=178.12.99.3 / DA=9.3.1.8

9.3.1.2 178.12.99.3 9.3.1.8 7.7.7.7
Inside Local Inside Global Outside Global Outside Local NAT

 Table

9.3.1.2

"Jahoo"
9.3.1.8

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 137

Agenda

•  TCP Fundamentals
•  TCP Performance
•  UDP
•  RFC Collection
•  NAT

–  NAT Basics
–  NAPT
–  Virtual Server
–  Complex NAT
–  DNS Aspects
–  Load Balancing
–  RFCs

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 138

TCP Load Sharing (1)

• Multiple servers represented by a single inside-
global IP address
–  Virtual host address

•  New TCP session requests to the Virtual Host
are forwarded to one of a group of real hosts
–  Rotary group

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 139

TCP Load Sharing (2)

5.5.5.5

1.0.0.1

1.0.0.2

1.0.0.3

1.0.0.240

TCP Connection Request
DA= 1.0.0.240 : 23
SA= 4.4.4.4 : 3931

4.4.4.4

6.6.6.6

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 140

TCP Load Sharing (3)

5.5.5.5

1.0.0.1

1.0.0.2

1.0.0.3

1.0.0.240

TCP Connection Request
DA= 1.0.0.1 : 23
SA= 4.4.4.4 : 3931

4.4.4.4

6.6.6.6 1.0.0.1:23 1.0.0.240:23 4.4.4.4:3931 TCP
Inside Local Inside Global Outside Global Prot.

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 141

TCP Load Sharing (4)

5.5.5.5

1.0.0.1

1.0.0.2

1.0.0.3

1.0.0.240

TCP Flow
DA= 4.4.4.4 : 3931
SA= 1.0.0.1 : 23

4.4.4.4

6.6.6.6 1.0.0.1:23 1.0.0.240:23 4.4.4.4:3931 TCP
Inside Local Inside Global Outside Global Prot.

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 142

TCP Load Sharing (5)

5.5.5.5

1.0.0.1

1.0.0.2

1.0.0.3

1.0.0.240

TCP Flow
DA= 4.4.4.4 : 3931
SA= 1.0.0.240:23

4.4.4.4

6.6.6.6

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 143

TCP Load Sharing (6)

5.5.5.5

1.0.0.1

1.0.0.2

1.0.0.3

1.0.0.240

TCP Connection Request
DA= 1.0.0.240 : 23
SA= 5.5.5.5 : 1297

4.4.4.4

6.6.6.6

TCP Connection Request
DA= 1.0.0.240 : 23
SA= 6.6.6.6 : 8748

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 144

TCP Load Sharing (7)

5.5.5.5

1.0.0.1

1.0.0.2

1.0.0.3

1.0.0.240

TCP Connection Request
DA= 1.0.0.2 : 23
SA= 5.5.5.5 : 1297

4.4.4.4

6.6.6.6 1.0.0.1:23 1.0.0.240:23 4.4.4.4:3931 TCP
Inside Local Inside Global Outside Global Prot.

TCP Connection Request
DA= 1.0.0.3 : 23
SA= 6.6.6.6 : 8748

1.0.0.2:23 1.0.0.240:23 5.5.5.5:1297 TCP
1.0.0.3:23 1.0.0.240:23 6.6.6.6:8748 TCP

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 145

Agenda

•  TCP Fundamentals
•  TCP Performance
•  UDP
•  RFC Collection
•  NAT

–  NAT Basics
–  NAPT
–  Virtual Server
–  Complex NAT
–  DNS Aspects
–  Load Balancing
–  RFCs

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 146

Further Information

•  RFC 1631
–  NAT

•  RFC 2391
–  Load Sharing Using IP Network Address Translation (LSNAT)

•  RFC 2666
–  IP Network Address Translator (NAT) Terminology and

Considerations
•  RFC 2694

–  DNS ALG
•  RFC 2776

–  Network Address Translation Protocol Translation (NAT-PT)
•  RFC 2993

–  Architectural Implications of NAT
•  RFC 3022

–  Traditional IP Network Address Translator (Traditional NAT)

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 147

Further Information

•  RFC 3027
–  Protocol Complications with the IP Network Address Translator,

•  RFC 3235
–  Network Address Translator (NAT)-Friendly Application Design

Guidelines

•  RFC3303
–  Middlebox Communication Architecture and Framework

•  RFC 3424
–  IAB Considerations for Unilateral Self Address Fixing (UNSAF) Across

Network Address Translation

•  RFC 3715
–  IPsec—Network Address Translation (NAT) Compatibility

Requirements

© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 148

Further Information

•  RFC 3489 STUN
–  Simple Traversal of User Datagram Protocol (UDP) Through Network

Address Translators (NATs) March 2003 (Obsoleted by RFC5389)

•  RFC 5389
–  Session Traversal Utilities for NAT (STUN) October 2008 (Obsoletes

RFC3489) (Status: PROPOSED STANDARD)

•  Internet Protocol Journal
–  www.cisco.com/ipj

•  Issue Volume 3, Number 4 (December 2000)
•  „The Trouble with NAT“
•  Issue Volume 7, Number 3 (September 2004)
•  „Anatomy (of NAT)“

