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TCP (Transmission Control Protocol) 

•  TCP is a connection oriented  
–  Call setup with "three way handshake" 

•  Provides a reliable end-to-end transport of data between 
computer processes of different end systems 
–  Error detection and recovery 
–  Maintaining the order of the data (sequencing) without duplication or 

loss 
–  Flow control 

•  Application's data is regarded as continuous byte stream 
–  TCP ensures a reliable transmission of segments of this byte stream 
–  Handover to Layer 7 at so called "Ports" 

•  OSI-Speak: Service Access Point 

•  RFC 793 
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4 4 
             

Layer 4 Protocol = TCP (Connection-Oriented) 

M M 

TCP and OSI Transport Layer 4 

IP Host A IP Host B 

Router 1 Router 2 

TCP Connection (Transport-Pipe) 
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TCP Protocol Functions      

•  TCP transmission block 
–  Called segment transmitted inside IP datagram's payload 

field 

•  ARQ Continuous Repeat Request  
–  With piggy-backed acknowledgments 

•  Error recovery  
–  Positive & multiple acknowledgements using timeouts for 

each segment 
•  Sequence numbers based on byte position within in the TCP 

stream  

•  Flow control 
–  Sliding window and dynamically adjusted window size 
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TCP Ports 

•  TCP provides its service to higher layers 
–  Through ports  

•  Port numbers identify 
–  Communicating processes in an IP host 

•  Using port numbers  
–  TCP can multiplex different layer-7 byte streams 

•  Server processes are identified by 
–  Well known port numbers : 0..1023 
–  Controlled by IANA 

•  Client processes use 
–  Arbitrary port numbers > 1023 
–  Better > 8000 because of registered ports 
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Well Known Ports 
Some Well Known Ports 
7    Echo 
20  FTP (Data), File Transfer Protocol 
21  FTP (Control) 
23  TELNET, Terminal Emulation 
25  SMTP, Simple Mail Transfer 

Protocol 
53  DNS, Domain Name Server 
69  TFTP, Trivial File Transfer 

Protocol 
80  HTTP Hypertext Transfer Protocol 
111  Sun Remote Procedure Call (RPC) 
137     NetBIOS Name Service 
138     NetBIOS Datagram Service 
139     NetBIOS Session Service 
161  SNMP, Simple Network 

Management Protocol 
162  SNMPTRAP 
322  RTSP (Real Time Streaming 

Protocol) Server 
 

Some Registered Ports 
1416  Novell LU6.2 
1433  Microsoft-SQL-Server 
1439  Eicon X25/SNA 

Gateway 
1527  Oracle 
1986  Cisco License Manager 
1998  Cisco X.25 service 

(XOT) 
5060      SIP (VoIP Signaling) 
6000  \ 
.....   >  X Window System 
6063  / 
 

 ... etc. 
 (see RFC1700) 



© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 9 

IP 

TCP Ports and TCP Connections 

TCP 

Server 
Process 1 

Server 
Process 2 

IP 

TCP 

IP 

TCP 

Client 
Process 3  

Client 
Process 9 

10.0.0.1 10.0.0.2 10.0.0.3 

System 
A 

System 
B 

System 
C 

80 25 23 3333 1234 

Port number 
identifies 
process 

IP address  
identifies IP host 

Port 
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Example 1: TCP Port 

IP (10.1.1.9) 

TCP (80 / 110) 

Server-Proc 1 
WWW 

Port 80 

Server-Proc 2 

POP3 
Port 110 

IP (10.1.1.1) 

TCP (4711) 

Client-Proc 
Port 4711 

DA:10.1.1.9 
SA:10.1.1.1 

DP:80 
SP:4711 

IP (10.1.1.2) 

TCP (7312) 

Client-Proc 
Port 7312 

DA:10.1.1.9 
SA:10.1.1.2 

DP:110 
SP:7312 

Server Host A Host B 

IP Header TCP Header 
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TCP Sockets and TCP Connection 

•  Client-server environment 
–  Server-process has to maintain several TCP connections = TCP 

streams (“flow”) to different targets at the same time 
–  Hence a single port at the server side has to multiplex several virtual 

connections 

•  How to distinguish these connections?  
–  Usage of so called sockets 

•  Socket 
–  Combination IP address and port number  

•  Note: similar to the OSI "CEP" Connection Endpoint Identifier 
•  E.g.: 10.1.1.2:80 [IP-Address : Port-Number] 

•  Each TCP connection is uniquely identified by 
–  A pair of sockets 

•  Source-IP, Source-Port, Destination-IP, Destination-Port 
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Example 2: TCP Socket 

IP (10.1.1.1) 

TCP (4711) 

Client-Proc 
Port 4711 

DA:10.1.1.9 
SA:10.1.1.1 

DP:80 
SP:4711 

IP (10.1.1.2) 

TCP (7312) 

Client-Proc 
Port 7312 

DA:10.1.1.9 
SA:10.1.1.2 

DP:80 
SP:7312 

Host A Host B 

IP (10.1.1.9) 

TCP (80) 

Server-Proc 1 
WWW 

Port 80 

Server 
Connection 1: 
Socket: 10.1.1.9 : 80 
Socket: 10.1.1.1 : 4711 

Connection 2: 
Socket: 10.1.1.9 : 80 
Socket: 10.1.1.2 : 7312 
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Example 3: TCP Socket 

IP (10.1.1.9) 

TCP (80) 

Server-Proc 1 
WWW 

Port 80 
Client-Proc 1 

Port 4711 

DA:10.1.1.9 
SA:10.1.1.2 

DP:80 
SP:4711 

IP (10.1.1.2) 

TCP (4711 / 7312) 

Client-Proc 2 
Port 7312 

DA:10.1.1.9 
SA:10.1.1.2 

DP:80 
SP:7312 

Server 
Host 

Connection 1: 
Socket: 10.1.1.9 : 80 
Socket: 10.1.1.2 : 4711 

Connection 2: 
Socket: 10.1.1.9 : 80 
Socket: 10.1.1.2 : 7312 

Connection 1: 
Socket: 10.1.1.9 : 80 
Socket: 10.1.1.2 : 4711 

Connection 2: 
Socket: 10.1.1.9 : 80 
Socket: 10.1.1.2 : 7312 



© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 14 
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TCP Header 

Destination Port Number Source Port Number 

Options (variable length) Padding 

PAYLOAD 

 0  4  8  12  16  20  24 28 32 

Sequence Number 

Acknowledgement Number 

Header 
Length 

P 
S 
H 

R 
S 
T 

S 
Y 
N 

F 
I 
N 

A 
C 
K 

U 
R 
G 

Reserved Window Size 

TCP Checksum Urgent Pointer 
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TCP Header Entries (1) 

•  Source and Destination Port 
–  16 bit port number for source and destination process 

•  Header Length 
–  Indicates the length of the header given as a multiple 4 bytes 
–  Necessary, because of the variable header length in case of options 

•  Sequence Number (32 Bit) 
–  Position number of the first byte of this segment 

•  In relation to the byte stream flowing through a TCP connection  
–  Wraps around to 0 after reaching 232 -1 

•  Acknowledge Number (32 Bit) 
–  Number of next byte expected by receiver 
–  Acknowledges the correct reception of all bytes up to ACK-number 

minus 1 



© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 17 

TCP Header Entries (2) 

•  SYN-Flag  
–  Indicates a connection request 
–  Sequence number synchronization 

•  ACK-Flag 
–  Acknowledge number is valid 
–  Always set, except in very first segment 

•  FIN-Flag 
–  Indicates that this segment is the last 
–  Other side must also finish the conversation  

•  RST-Flag 
–  Immediately kill the conversation 
–  Used to refuse a connection-attempt 
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TCP Header Entries (3) 

•  PSH-Flag 
–  TCP should push the segment immediately to the 

application without buffering 
–  To provide low-latency connections 
–  Often ignored 
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TCP Header Entries (4) 

•  URG-Flag 
–  Indicates urgent data 
–  If set, the 16-bit "Urgent Pointer" field is valid  

and points to the last byte of urgent data 
–  There is no way to indicate the beginning of  

urgent data (!) 
–  Applications switch into the "urgent mode" 
–  Used for quasi outband signaling 

•  Urgent Pointer 
–  Points to the last octet of urgent data 
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TCP Header Entries (5) 

• Window (16 Bit) 
–  Adjusts the send-window size of the other side 
–  Flow control STOP and GO 
–  Receiver-based flow control 
–  Used with every segment 
–  Sequence number of last byte allowed to send = ACK 

number + window value seen in this segment  
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TCP Header Entries (6) 

•  Checksum 
–  Calculated over TCP header, payload and 12 byte pseudo 

IP header 
–  Pseudo IP header consists of source and destination IP 

address, IP protocol type, and IP total length 
–  Complete socket information is protected 
–  Thus TCP can also detect IP errors 

•  Options 
–  Only MSS (Maximum Message Size) is used 
–  Other options are defined in RFC1146, RFC1323 and 

RFC1693 
•  Pad 

–  Ensures 32 bit alignment 
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TCP 3-Way-Handshake 

ACK = ? 
SEQ = 730 (random) 

ACK = 401 
SEQ = 731 

ACK = 401 
SEQ = 731 

ACK = 731 
SEQ = 400 (random) 

ACK = ? 
SEQ = ? (idle) 

ACK = 731 
SEQ = 401  

ACK=?  SEQ=730 
            SYN 

ACK=731  SEQ=400 

        S
YN, ACK 

ACK=401  SEQ=731 
             ACK 

SYNCHRONIZED 

Client (Initiator) Server (Listener) 



© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 24 

TCP Data Transfer 

ACK = 401 
SEQ = 731  

ACK = 401 
SEQ = 751 

ACK = 401 
SEQ = 801 

ACK = 751 
SEQ = 401  

ACK = 731 
SEQ = 401 

ACK = 801 
SEQ = 401  

ACK=401  SEQ=731 
         20 Bytes 

ACK=751  SEQ=401 

        0
 Bytes 

ACK=401  SEQ=751 
             50 Bytes 

ACK=801  SEQ=401 

        0
 Bytes 
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TCP Data Transfer 
•  Acknowledgements are generated for all bytes which arrived in 

sequence without errors  
–  Positive acknowledgement 

•  If a segment arrives out of sequence, no acknowledges are sent until 
this "gap" is closed  (old TCP) 
–  Timeout will initiate a retransmission of unacknowledged data  
 

•  Duplicates are also acknowledged (!) 
–  Receiver cannot know why duplicate has been sent; maybe because of a lost 

acknowledgement 

•  The acknowledge number indicates the sequence number of the 
next byte to be received 

•  Acknowledgements are cumulative 
–  Ack(N) confirms all bytes with sequence numbers up to N-1  
–  Therefore lost acknowledgements are no problem 



© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 26 

Cumulative Acknowledgement 

Data(13)  Seq=10 

Data(15)  Seq=23 

Data(11)  Seq=43 

Data(9)  Seq=54 

Data(5)  Seq=38 

Ack = 23 

Ack = 38 

Ack = 43 

Ack = 54 

Ack = 63 

Ack is lost 

Cumulative Ack 



© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 27 

TCP Duplicates, Lost Original (old TCP) 

Data(13)  Seq=10 

Data(15)  Seq=23 

Data(11)  Seq=43 

Data(5)  Seq=38 

Data(5)  Seq=38 

Ack = 23 

Ack = 38 

Ack = 54 

Data is lost ->  
No Ack anymore  

until gap is closed Repair by  
retransmission 
after RTO 
timeout of  
segment seq# 38 Cumulative Ack 
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Duplicate Acknowledgement (new TCP) 

Data(13)  Seq=10 

Data(15)  Seq=23 

Data(11)  Seq=43 

Data(5)  Seq=38 

Data(5)  Seq=38 

Ack = 23 

Ack = 38 

Ack = 38 

Ack = 54 

Data is lost 

Duplicate Ack 

Cumulative Ack 

Repair by  
retransmission 
after RTO 
timeout of  
segment seq# 38 
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TCP Duplicates, Lost Acknowledgement 

Data(13)  Seq=10 

Data(15)  Seq=23 

Data(15)  Seq=23 

Ack = 23 

Ack = 38 

Ack = 38 

Ack is lost 
RTO timeout: retransmission 
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TCP Duplicates, Delayed Original 

Data(13)  Seq=10 

Data(15)  Seq=23 

Data(15)  Seq=23 

Data(11)  Seq=43 

Data(5)  Seq=38 

Ack = 23 

Ack = 43 

Ack = 54 Cumulative Acks 

No Ack anymore  
until gap is closed 

Ack = 54 

Repair by  
retransmission 
after RTO 
timeout of  
segment seq# 38 
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TCP Retransmission Timeout 

•  Retransmission timeout (RTO) will initiate a 
retransmission of unacknowledged segments  
–  High timeout results in long idle times  

if an error occurs 
–  Low timeout results in  

unnecessary retransmissions 
•  Constant timeout will never fit 

–  Remember: RTT is a statistic value in the packet switching 
world 

•  Adaptive timeout is necessary 
•  For TCP's performance a precise estimation of 

the current RTT is crucial 
–  TCP continuously measures RTT to adapt RTO 
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Retransmission Ambiguity Problem 

•  If a segment has been retransmitted and an ACK 
follows: Does this ACK belong to the 
retransmission or to the original packet? 
–  Could distort RTT measurement dramatically 

•  Solution: Phil Karn's algorithm 
–  Ignore ACKs of a retransmission for the RTT 

measurement 
–  And use an exponential backoff method 



© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 33 

RTT Estimation 
•  Originally a smooth RTT estimator was used (a low pass filter) 

–  M denotes the observed RTT (which is typically imprecise because there is no 
one-to-one mapping between data and ACKs) 

–  R = αR+(1 − α)M with smoothing factor α=0.9 
–  Finally RTO = β ·R with variance factor β=2 

•  Initial smooth RTT estimator could not keep up with wide 
fluctuations of the RTT 
–  Led to too many retransmissions 

•  Jacobson's suggested to take the RTT variance also into account 
–  Err = M − A 

•  The deviation from the measured RTT (M) and the RTT estimation (A) 
–  A = A + g · Err    

•  with gain g = 0.125 
–  D = D + h ( |Err| − D ) 

•  with h = 0.25 
–  RTO = A + 4D 

FYI 
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TCP Keepalive Timer 

•  Note that absolutely no data flows during an idle 
TCP connection! 
–  Even for hours, days, weeks! 

•  Usually needed by a server that wants to know 
which clients are still alive 
–  To close stale TCP sessions 

• Many implementations provide an optional TCP 
keepalive mechanism 
–  Not part of the TCP standard! 
–  Not recommended by RFC 1122 (TCP/IP hosts 

requirements) 
–  Minimum interval must be 2 hours 
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TCP Disconnect 

ACK = 178 
SEQ = 732  

ACK = 178 
SEQ = 733 

ACK = 179 
SEQ = 733 

ACK = 733 
SEQ = 178  

ACK = 732 
SEQ = 178 

ACK = 733 
SEQ = 179  

ACK=178  SEQ=732 
              FIN, ACK 

SEQ=178  ACK=733 

          
   ACK 

ACK=179  SEQ=733 
            ACK 

SEQ=178  ACK=733 

          
    FIN, ACK 

ACK = 733 
SEQ = 178  

Session A->B closed 

Session B->A closed 

Host A Host B 
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Flow control:  "Sliding Window" 

•  TCP flow control is done with dynamic 
windowing using the sliding window protocol 

•  The receiver advertises the current amount of 
octets it is able to receive 
–  Using the window field of the TCP header  
–  Values 0 through 65535 

•  Sequence number of the last octet a sender may 
send = received ack-number -1 + window size 
–  The starting size of the window is negotiated during the 

connect phase 
–  The receiving process can influence the advertised 

window, hereby affecting the TCP performance 
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Sliding Window: Initialization 

45 46 47 48 49 50 51 .... 

[SYN]  S=44  A=?  W=8  
[SYN, ACK]  S=72  A=45  W=6  

[ACK]  S=45  A=73  W=8  

Advertised Window 
 (by the receiver) 

bytes in the send-buffer  
written by the application  

process  

System A System B 

first byte that 
can be send last byte that 

can be send 
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Sliding Window: Principle 

45 46 47 48 49 50 51 52 53 54 55 56 

Advertised Window 
 (by the receiver) 

bytes to be sent  
by the sender 

Sent and already 
acknowledged 

Sent but not yet 
acknowledged 

Will send as 
soon as possible 

can't send until 
window moves 

.... 

Usable window 

Sender's (System A) point of view after sender got {ACK=48, WIN=6} 
from the receiver (System B) 
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Closing the Sliding Window   

45 46 47 48 49 50 51 52 53 54 55 56 

Advertised Window 
 

Bytes 48,49,50 
sent but not yet 
acknowledged 

.... 

[ACK]  S=...  A=51  W=3  

45 46 47 48 49 50 51 52 53 54 55 56 

Advertised 
Window 

 
.... 

Now the sender may send bytes 51, 52, 53. The receiver didn't open the window (W=3, right 
edge remains constant) because of congestion. However, the remaining three bytes inside the 

window are already granted, so the receiver cannot move the right edge leftwards.   

received from the other side: 
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Flow Control -> STOP, Window Closed   

45 46 47 48 49 50 51 52 53 54 55 56 

Advertised 
Window 

 
.... 

Bytes 51,52,53 
sent but not yet 
acknowledged 

45 46 47 48 49 50 51 52 53 54 55 56 .... 

received from the other side: 

[ACK]  S=...  A=54  W=0  
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Opening the Window ->  Flow Control GO   

[ACK]  S=...  A=54  W=4  

48 49 50 51 52 53 54 55 56 57 58 59 

Advertised Window 
 

.... 

received from the other side: 

48 49 50 51 52 53 54 55 56 .... 57 58 
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Increasing the Sliding Window 

51 52 53 54 55 56 57 58 59 60 61 62 

Advertised Window 
 

Bytes 54,55,56 
sent but not yet 
acknowledged 

.... 

[ACK]  S=...  A=56  W=5  

51 52 53 54 55 56 57 58 59 60 61 62 

Advertised Window 
 

.... 

received from the other side: 
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TCP Persist Timer (1/2) 

•  Deadlock possible: 
Window is zero and 
window-opening 
ACK is lost! 
–  ACKs are sent 

unreliable! 
–  Now both sides wait for 

each other! 

S=3120, payload: 1000 bytes 

ACK, A=4120, W=0  

ACK, A=4120, W=20000  

Waiting until 
window is being 

opened 

Waiting until 
data is sent 
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TCP Persist Timer (2/2) 

•  Solution: Sender may send 
window probes: 

–  Send one data byte beyond 
window 

–  If window remains closed then 
this byte is not acknowledged—
so this byte keeps being 
retransmitted 

•  TCP sender remains in persist 
state and continues 
retransmission forever (until 
window size opens) 

–  Probe intervals are increased 
exponentially between 5 and 60 
seconds 

–  Max interval is 60 seconds 
(forever) 

S=4121, payload: 1 byte 

ACK, A=4122, W=20000  

S=3120, payload: 1000 bytes 

ACK, A=4120, W=0  

S=4121, payload: 1 byte 

ACK, A=4120, W=0  

probe 

probe 

S=4121, payload: 1 byte 
probe 

ACK, A=4122, W=20000  
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TCP Enhancements 

•  So far, only the very basic TCP procedures have been 
mentioned 

•  But TCP has much more magic built-in algorithms which 
are essential for operation in today's IP networks: 
–  "Slow Start" and “Congestion Avoidance” 
–  "Fast Retransmit" and "Fast Recovery" 
–  "Delayed Acknowledgements" 
–  "The Nagle Algorithm“ 
–  Selective ACK (SACK), Window Scaling 
–  Silly windowing avoidance 
–  .... 

•  Additionally, there are different implementations (Reno, 
Vegas, …) 
–  … 
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Interactive Traffic 

Client Server 

data byte 

Ack 

echo of data byte 

Ack 

Key pressed TCP received data, 
acknowledges it, and 
forwards the data  to 
the server application 

Client application 
shows data on the 

display 

Echo from server 
application 
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Interactive Traffic with Delayed ACK 

Client Server 

data byte 

echo of data byte 
+ Ack 

Ack 

Key pressed TCP received data, 
delayed 
acknowledgement, and 
forwards the data  to the 
server application 

Client application 
shows data on the 

display 

Echo plus Ack from 
server application 
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Delayed ACKs 
•  Goal: Reduce traffic, support 

piggy-backed ACKs 
•  Normally TCP, after receiving 

data, does not immediately 
send an ACK 

•  Typically TCP waits 
(typically) 200 ms and hopes 
that layer-7 provides data 
that can be sent along with 
the ACK 

Example:  
Telnet and no Delayed ACK 

Key press "A" 

ACK 
Echo "A" 

Example:  
Telnet with Delayed ACK 

Key press "A" 

ACK + Echo "A" 
Wait 100 ms 
on average  
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Nagle Algorithm 

•  Goal: Avoid tinygrams on expensive (and usually slow) 
WAN links 

•  In RFC 896 John Nagle introduced an efficient algorithm 
to improve TCP 

•  Idea: In case of outstanding (=unacknowledged) data, 
small segments should not be sent until the outstanding 
data is acknowledged 

•  In the meanwhile small amount of data (arriving from 
Layer 7) is collected and sent as a single segment when 
the acknowledgement arrives 

•  This simple algorithm is self-clocking 
–  The faster the ACKs come back, the faster data is sent 

•  Note: The Nagle algorithm can be disabled! 
–  Important for real-time services  
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Agenda 

•  TCP Fundamentals 
–  Principles, Port and Sockets 
–  Header Fields 
–  Three Way Handshake 
–  Windowing 
–  Enhancements 

•  TCP Performance 
–  Slow Start and Congestion Avoidance 
–  Fast Retransmit and Fast Recovery 
–  TCP Window Scale Option and SACK Options 
–  Explicit Congestion Notification (ECN) 

•  UDP 
•  RFC Collection 
•  NAT 
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Once again: The Window Size 

•  The windows size (announced by the peer) indicates how 
many bytes I may send at once  
–  Without having to wait for acknowledgements 

•  Before 1988, TCP peers tend to exploit the whole window 
size at once after startup 
–  Sending several segments in a sequence  
–  Usually no problem for hosts  
–  But led to frequent network congestions 

•  Another problem: 
–  In case of segment loss sender can use the window given by the 

receiver but when window becomes closed the sender must wait until 
retransmission timer times out 

–  That means during that time sender may not fully use the offered 
bandwidth of the network even if its available 

•  TCP performance degradation 
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Congestion  

•  Problem (buffer overflows) appears at bottleneck 
links 
–  Some intermediate router must queue packets 
–  Queue overflow -> retransmission -> even more overflow! 
–  Can't be solved by traditional receiver-imposed flow 

control (using the window field) 

Pipe model of a network path: Big fat pipes (high data rates) outside, a 
bottleneck link in the middle. The green packets are sent at the maximum 

achievable rate so that the interpacket delay is almost zero at the bottleneck 
link; however there is a significant interpacket gap in the fat pipes.   
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How to Improve TCP Performance? 
•  TCP should be "ACK-clocking" 

–  New packets should be injected at the rate at which ACKs are 
received 

–  Duplicate ACKs are necessary to feel the ACK clocking in case of 
some segments get lost. 

•  Ideal case:  
–  Rate at which new segments are injected into the network = 

acknowledgment-rate of the other end 
–  Requires a sensitive algorithm to catch the equilibrium point between 

high data throughput and packet dropping due to queue overflow: 
      Van Jacobson’s Slow Start and Congestion Avoidance 

          (sender-imposed flow control) 
 

•  Assumption: 
–  Packet loss in today's networks are mainly caused by congestion but 

not by bit errors on physical lines (optical, digital transmission) 
•  Note: but not valid for WLAN 
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Once again: Duplicate ACKs 

•  TCP receivers send duplicate 
ACKs if segments are 
missing 
–  ACKs are cumulative (each ACK 

acknowledges all data until 
specified ACK-number) 

–  Duplicate ACKs should not be 
delayed 

•  ACK=300 means: "I am still 
waiting for packet with 
SQNR=300" 

SQNR=100 
SQNR=200 
SQNR=300 
SQNR=400 

ACK=200 

ACK=300 

ACK=300 

SQNR=300 

SQNR=500 

ACK=300 

… 

Duplicate Ack 

Duplicate Ack 



© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 57 

Slow Start Parameters 

•  Two important parameters are communicated 
during the TCP three-way handshake 
–  The maximum segment size (MSS)  
–  The advertized window size W  

•  Now Slow Start introduces the congestion 
window (cwnd) 
–  Only locally valid and locally maintained 
–  Like window field stores a byte count 

•  Rule:  
–  The sender may transmit up to the minimum of the 

congestion window and the advertised window 
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Idea of Slow Start 
•  Upon new session, cwnd is 

initialized with MSS (= 1 segment) 
•  Allowed bytes to be sent:  

–  Current window size = Minimum (W, 
cwnd) 

•  Each time an ACK is received, 
cwnd is incremented by 1 segment 
–  That is, cwnd doubles every RTT (!) 
–  Exponential increase! 

cwnd=1 MSS Data 

Ack 
cwnd=2 MSS 

cwnd=4 MSS 

cwnd=4 MSS 

… 
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Graphical Illustration (1/4) 
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Graphical Illustration (2/4) 
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Graphical Illustration (3/4) 
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Graphical Illustration (4/4) 

•  TCP is "self-clocking" 
–  The spacing between the ACKs is the same as between the data segments 
–  The number of ACKs is the same as the number of data segments 

•  In our example, cwnd=8 is the optimum   
–  This is the bandwidth-delay product ( 8 = RTT x BW) 
–  In other words: the pipe can accept 8 segments per round-trip-time 
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cwnd=8 => Pipe is full (ideal situation) – 
cwnd should not be increased anymore! 

cwnd=8 
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Performance Limitation of all ARQ Protocols 

•  By “Bandwidth-Delay Product” = “Channel Volume” 
•  Continuous RQ with sliding window  

–  The sender's window must be large enough to avoid stopping of sending 

•  Channel volume maybe increased 
–  By delays caused by buffers 
–  Limited signal speed 
–  Bandwidth 

1 

1) Doubled bandwidth: 

2 3 4 5 6 7 8 

4 3 2 1 8 7 6 5 

2) Doubled RTT: 
Additional capacity 
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End of Slow Start -> Congestion     

•  Slow start leads to an exponential increase of 
the data rate until some network bottleneck is 
congested and some segments get dropped! 

•  Congestion can be detected by the sender 
through timeouts or duplicate 
acknowledgements 

•  Slow start reduces its sending rate with the help 
of a companion algorithm, called ”Congestion 
Avoidance" 
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Congestion Avoidance (1) 

•  Upon congestion (=duplicate ACKs)  
–  Reduce the sending rate by half and now increase the rate 

linearly until duplicate ACKs are seen again (and repeat 
this continuously) 

•  Congestion Avoidance requires TCP to maintain 
another variable  
–  Slow Start Threshold" (ssthresh) 

–  ssthresh is set to half the current window size in case a 
duplicate ACK is received 

•  Initially, ssthresh is set to TCP’s maximum possible MSS (i.e. 
65,535 bytes) 

•  Note: ssthresh marks a safe window size because congestion 
occurred at a window size of 2 x ssthresh 
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Congestion Avoidance (2) 

•  If the congestion is indicated by  
–  A timeout:  

•  cwnd is set to 1 -> forcing slow start again 
–  A duplicate ACK:  

•  cwnd is set to ssthresh (= 1/2 current window size) 

•  cwnd ≤ ssthresh:  
–  Slow start, doubling cwnd every round-trip time 
–  Exponential growth of cwnd 

•  cwnd > ssthresh:  
–  Congestion avoidance, cwnd is incremented  

by MSS × MSS / cwnd every  time an ACK is received 
–  linear growth of cwnd 
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Slow Start and Congestion Avoidance 

2 

4 

6 

8 

10 

12 

14 

16 

18 

20 

cwnd  
 

round-trip times  

ACK missing 
Timeout 

Timeout 

ssthresh = 8 

Duplicate ACK 

ssthresh = 6 

cwnd=16 

cwnd=12 

High Congestion: Every segment 
gets lost from a certain time on 

Low Congestion: Only single 
segment gets lost 
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Slow Start and Congestion Avoidance 

cwnd / MSS 

t / RTT 1 2 3 4 5 6 7 8 9 

2 

4 

6 
8 

10 

12 
14 

16 

18 

20 

Duplicate ACK received 
at cwnd = 32 

Duplicate ACK received 
at cwnd = 20 

Congestion Avoidance 

Congestion Avoidance 

 Duplicate ACK 

Duplicate ACK 

Low Congestion: Only some 
segments get lost 
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The Combined Algorithm 

New Session: initialize cwnd = 1 MSS, ssthresh = 65535 

Determine actual window size "AWS" = Min (W, cwnd) 
              ** send AWS bytes ** 

Retransmission 
timeout expired 

Duplicate ACKs 
received 

Data 
acknowledged 

Increment cwnd 
 by 1/cwnd for  

each ACK received 

cwnd = 1 
ssthresh = AWS/2 

ssthresh = AWS/2 
(but at least 2 MSS) 

(cwnd > ssthresh) ? 

yes no 

Increment cwnd  
by one for each  
ACK received.  

FYI 
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Long Term View of TCP Throughput 

                   Time  

Relative  
Throughput 

Rate  
 

ssthresh 

Duplicate Ack Duplicate Ack Duplicate Ack Duplicate Ack 

slow start congestion 
avoidance 

congestion 
avoidance 

congestion 
avoidance 

max. 
achievable 
throughput 

"Wave Effect" 
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Real TCP Performance 

•  TCP always tries to minimize the data delivery 
time 

•  Good and proven self-regulating mechanism to 
avoid congestion 

•  TCP is "hungry but fair" 
–  Essentially fair to other TCP applications  
–  Unreliable traffic (e. g. UDP) is not fair to TCP… 
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Agenda 

•  TCP Fundamentals 
–  Principles, Port and Sockets 
–  Header Fields 
–  Three Way Handshake 
–  Windowing 
–  Enhancements 

•  TCP Performance 
–  Slow Start and Congestion Avoidance 
–  Fast Retransmit and Fast Recovery 
–  TCP Window Scale Option and SACK Options 
–  Explicit Congestion Notification (ECN) 

•  UDP 
•  RFC Collection 
•  NAT 
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"Fast Retransmit" 

•  Note that duplicate ACKs are also sent upon 
packet reordering 

•  Therefore TCP waits for 3 duplicate ACKs before 
it really assumes congestion 
–  Immediate retransmission (don't wait for timer expiration) 

•  This is called the Fast Retransmit algorithm 
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"Fast Recovery" 

•  After Fast Retransmit TCP continues with Congestion 
Avoidance 
–  ssthresh is set to half the current window size 
–  cwnd is set to ssthresh plus 3 times the maximum segment size. 
–  Does NOT fall back to Slow Start 

•  Every another duplicate ACK tells us that a "good" 
segment has been received by the peer 
–  cwnd = cwnd + MSS 
–  => Send one additional segment 

•  As soon a normal ACK is received 
–  cwnd = ssthresh = Minimum (W, cwnd)/2 

•  This is called Fast Recovery  
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Fast Retransmit and Fast Recovery 

2 

4 

6 

8 
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14 
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20 

cwnd  
 

round-trip times  

ssthresh = 8 

 1st duplicate Ack 

 cwnd = 10 

cwnd=12 

ssthresh = 7 

 3rd  duplicate Ack: 
indication for 

single packet failure 
single packet repair 

further duplicate Acks 

 cwnd = 7 
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All Together! 

New Session: initialize cwnd = 1 MSS, ssthresh = 65535 

Determine actual window size "AWS" = Min (W, cwnd) 
              ** send AWS bytes ** 

Retransmission 
timeout expired 

3 duplicate ACKs 
received 

Data 
acknowledged 

Increment cwnd 
 by 1/cwnd for  

each ACK received 

cwnd = 1 
ssthresh = AWS/2 

ssthresh = AWS/2 
(but at least 2 MSS), 

retransmit the segment, 
cwnd = ssthresh+3 MSS, 

for each 3+nth duplicate ACK 
increase cwnd by 1 MSS;  

then set cwnd=ssthresh upon 
first "normal" ACK 

(cwnd > ssthresh) ? 

yes no 

Increment cwnd  
by one for each  
ACK received.  

Slow Start, Congestion Avoidance, 
Fast Retransmit, and Fast Recovery 

FYI 
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Agenda 

•  TCP Fundamentals 
–  Principles, Port and Sockets 
–  Header Fields 
–  Three Way Handshake 
–  Windowing 
–  Enhancements 

•  TCP Performance 
–  Slow Start and Congestion Avoidance 
–  Fast Retransmit and Fast Recovery 
–  TCP Window Scale Option and SACK Options 
–  Explicit Congestion Notification (ECN) 

•  UDP 
•  RFC Collection 
•  NAT 
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TCP Header Window Field 

Source Port Number Destination Port Number 

0 15 16 31 

Sequence Number 

Acknowledgement Number 

Header 
Length 

U 
R 
G 

A 
C 
K 

P 
S 
H 

R 
S 
T 

S 
Y 
N 

F 
I 
N Window Size 

TCP Checksum Urgent Pointer 

20 
bytes 

TCP Options (if any) 
    ...........            (PAD) 

Data (if any) 
........... 
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TCP Options 

• Window-scale option 
–  a maximum segment size of 65,535 octets is inefficient for 

high delay-bandwidth paths 
–  the window-scale option allows the advertised window size 

to be left-shifted (i.e. multiplication by 2) 
–  enables a maximum window size of 2^30 octets ! 
–  negotiated during connection establishment 

•  SACK (Selective Acknowledgement) 
–  if the SACK-permitted option is set during connection 

establishment, the receiver may selectively acknowledge 
already received data even if there is a gap in the TCP 
stream (Ack-based synchronization maintained) 
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Agenda 

•  TCP Fundamentals 
–  Principles, Port and Sockets 
–  Header Fields 
–  Three Way Handshake 
–  Windowing 
–  Enhancements 

•  TCP Performance 
–  Slow Start and Congestion Avoidance 
–  Fast Retransmit and Fast Recovery 
–  TCP Window Scale Option and SACK Options 
–  Explicit Congestion Notification (ECN) 

•  UDP 
•  RFC Collection 
•  NAT 
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What's Happening in the Network?  

•  Tail-drop queuing is the standard dropping 
behavior in FIFO queues  
–  If queue is full all subsequent packets are dropped 

New arriving packets are dropped 
("Tail drop") 

Full queue 
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Tail-drop Queuing (cont.) 

•  Another representation:  
Drop probability versus queue depth 

100% 

0% 
Queue Depth 
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Tail-drop Problems 

•  No flow differentiation 
•  TCP starvation upon multiple packet drop  

•  TCP receivers may keep quiet (not even send duplicate ACKs) 
and sender falls back to slow start  
– worst case! 

•  TCP fast retransmit and/or selective acknowledgement may help 

•  TCP synchronization 
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TCP Synchronization 
•  Tail-drop drops many segments of different sessions at the same 

time 
•  All these sessions experience duplicate ACKs and perform 

synchronized congestion avoidance 

RTT  

Relative  
Throughput 

Rate 
(Window size) 

 

Duplicate Ack Duplicate Ack Duplicate Ack Duplicate Ack 

slow start congestion 
avoidance 

congestion 
avoidance 

congestion 
avoidance 

max. achievable throughput 

Average link 
utilization 
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Random Early Detection (RED) 

•  Utilizes TCP specific behavior 
–  TCP dynamically adjusts traffic throughput by reducing 

window size 
•   in order to accommodate to the minimal available bandwidth 

(bottleneck)  

•  "Missing" (dropped) TCP segments cause 
window size reduction! 
–  Idea: Start dropping TCP segments before queuing "tail-

drops" occur 
–  Make sure that "important" traffic is not dropped 

•  RED randomly drops segments before queue is 
full 
–  Drop probability increases linearly with queue depth 
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RED 

•  Important RED parameters 
–  Minimum threshold 
–  Maximum threshold 
–  Average queue size (running average) 

•  RED works in three different modes 
–  No drop 

•  If average queue size is between 0 and minimum threshold 
–  Random drop 

•  If average queue size is between minimum and maximum 
threshold 

–  Full drop 
•  If average queue size is equal or above maximum threshold = "tail-

drop" 

FYI 
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RED Parameters 

Drop probability 

Mark probability 

100% 

10% 

min-thresh max-thresh 

Average 
queue size 

(e.g. 20) (e.g. 40) 

Tail-drop (full drop) 

(packets) 
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Weighted RED (WRED) 

•  Drops less important packets more aggressively 
than more important packets 

•  Importance based on: 
–  IP precedence 0-7 (ToS byte) 
–  DSCP value 0-63 (ToS byte) 

•  Classified traffic can be dropped based on the 
following parameters 
–  Minimum threshold 
–  Maximum threshold 
–  Mark probability denominator  

(Drop probability at maximum threshold) 
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WRED Parameters 

Drop probability 

100% 

10% 

min-thresh 
Prec 4 

max-thresh 

Average 
queue size 

Tail-drop (full drop) 

(packets) 
min-thresh 

Prec 3 
min-thresh 

Prec 0 
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RED Problems 

•  RED performs "Active Queue 
Management" (AQM) and drops packets before 
congestion occurs 
–  But an uncertainty remains whether congestion will occur 

at all 
•  RED is known as "difficult to tune" 

–  Goal: Self-tuning RED 
–  Running estimate weighted moving average (EWMA) of 

the average queue size 

FYI 
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Explicit Congestion Notification (ECN) 

•  Traditional TCP stacks only use segment loss as indicator to reduce 
window size 

–  But some applications are sensitive to packet loss and delays  
•  Routers with ECN enabled mark packets when the average queue depth 

exceeds a threshold 
–  Instead of randomly dropping them 
–  Hosts may reduce window size upon receiving ECN-marked packets 

•  Least significant two bits of IP TOS used for ECN 

ECT CE IP TOS Field 

DSCP ECN 

Obsolete (but widely used) RFC 2481 
notation of these two bits: 

 ECT  ECN-Capable Transport 
 CE  Congestion Experienced 
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Usage of CE and ECT  
•  RFC 3168 redefines the use of the two bits: ECN-supporting  hosts should 

set one of the two ECT code points 
–  ECT(0) or ECT(1) 
–  ECT(0) SHOULD be preferred 

•  Routers that experience congestion set the CE code point in packets with 
ECT code point set (otherwise: RED) 

•  If average queue depth is exceeding max-threshold: Tail-drop 
•  If CE already set: forward packet normally (abuse!) 

0 0 
0 1 
1 0 
1 1 

Non ECN-capable transport 
ECT(1) 
ECT(0) 

Codepoints for ECN-capable transport 

CE codepoint 

ECN Field 

FYI 
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CWR and ECE 
•  RFC 3168 also introduced two new TCP flags 

–  ECN Echo (ECE) 
–  Congestion Window Reduced (CWR) 

•  Purpose: 
–  ECE used by data receiver to inform the data sender when a CE packet has been 

received 
–  CWR flag used by data sender to inform the data receiver that the congestion window 

has been reduced 

IP TOS: ECT  IP TOS: CE  

TCP: ECE TCP: ECE 

Congestion 

IP TOS: ECT  

TCP: ECE 

TCP: CWR TCP: CWR TCP: CWR 

Header 
Length 

P 
S 
H 

R 
S 
T 

S 
Y 
N 

F 
I 
N 

A 
C 
K 

U 
R 
G 

Reserved Window Size 
E 
C 
E 

C 
W 
R 

Part of TCP header: 
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Note 

•  CE is only set when average queue depth 
exceeds a threshold 
–  End-host would react immediately 
–  Therefore ECN is not appropriate for short term bursts 

(similar as RED) 
•  Therefore ECN is different as the related features 

in Frame Relay or ATM which acts also on short 
term (transient) congestion 

FYI 
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Agenda 

•  TCP Fundamentals 
–  Principles, Port and Sockets 
–  Header Fields 
–  Three Way Handshake 
–  Windowing 
–  Enhancements 

•  TCP Performance 
–  Slow Start and Congestion Avoidance 
–  Delay Bandwidth Product 
–  Fast Retransmit and Fast Recovery 
–  TCP Window Scale Option and SACK Options 
–  Explicit Congestion Notification (ECN) 

•  UDP 
•  RFC Collection 
•  NAT 
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IP transmission over 
 
 
 

ATM 
RFC 1483 

IEEE 802.2 
RFC 1042 

X.25 
RFC 1356 

FR 
RFC 1490 

PPP 
RFC 1661 

TCP/IP Protocol Suite 

Physical 

Link 

Network 

Transport 

Session 

Presentation 

Application SMTP HTTP 
HTTPS FTP Telnet 

SSH DNS  DHCP 
(BootP) TFTP etc. 

TCP 
(Transmission Control Protocol) 

UDP 
(User Datagram 

Protocol) 

IP (Internet Protocol) 
ICMP 

ARP RARP 

      Routing Protocols 

     RIP OSPF 
   BGP 

( US-ASCII and MIME ) 

( RPC ) 
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UDP (User Datagram Protocol, RFC 768) 

•  UDP is a connectionless layer 4 service 
(datagram service) 

•  Layer 3 Functions are extended by port 
addressing and a checksum to ensure integrity  

•  UDP uses the same port numbers as TCP (if 
applicable) 

•  Less complex than TCP, easier to implement 
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4 4 
             

Layer 4 Protocol = UDP (Connectionless) 

M M 

UDP and OSI Transport Layer 4 

IP Host A IP Host B 

Router 1 Router 2 

UDP Connection (Transport-Pipe) 
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UDP Usage 

•  UDP is used 
–  When the overhead of a connection oriented service is 

undesirable 
•  E.g. for short DNS request/reply 

–  When the implementation has to be small 
•  e.g. BootP, TFTP, DHCP, SNMP 

–  Where retransmission of lost segments makes no sense 
•  Voice over IP 
•  Multimedia streams 
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UDP Header 

Destination Port Number Source Port Number 

PAYLOAD 

 0  4  8  12  16  20  24 28 32 

UDP Length UDP Checksum 
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Important UDP Port Numbers 
–  7    Echo 
–  53  DOMAIN, Domain Name Server 
–  67  BOOTPS, Bootstrap Protocol Server 
–  68  BOOTPC, Bootstrap Protocol Client 
–  69  TFTP, Trivial File Transfer Protocol 
–  79  Finger 
–  111  SUN RPC, Sun Remote Procedure Call 
–  137  NetBIOS Name Service 
–  138  NetBIOS Datagram Service 
–  161  SNMP, Simple Network Management Protocol 
–  162  SNMP Trap 
–  322  RTSP (Real Time Streaming Protocol) Server 
–  520     RIP 
–  5060  SIP (VoIP Signaling) 
–  xxxx  RTP (Real-time Transport Protocol) 
–  xxxx+1  RTCP (RTP Control Protocol) 
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Agenda 

•  TCP Fundamentals 
–  Principles, Port and Sockets 
–  Header Fields 
–  Three Way Handshake 
–  Windowing 
–  Enhancements 

•  TCP Performance 
–  Slow Start and Congestion Avoidance 
–  Delay Bandwidth Product 
–  Fast Retransmit and Fast Recovery 
–  TCP Window Scale Option and SACK Options 
–  Explicit Congestion Notification (ECN) 

•  UDP 
•  RFC Collection 
•  NAT 
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RFCs 

•  0761 - TCP 
•  0813 - Window and Acknowledgement Strategy in TCP 
•  0879 - The TCP Maximum Segment Size  
•  0896 - Congestion Control in TCP/IP Internetworks 
•  1072 - TCP Extension for Long-Delay Paths 
•  1106 - TCP Big Window and Nak Options 
•  1110 - Problems with Big Window 
•  1122 - Requirements for Internet Hosts -- Com. Layer  
•  1185 - TCP Extension for High-Speed Paths 
•  1323 - High Performance Extensions (Window Scale) 
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RFCs 

•  2001 - Slow Start and Congestion Avoidance (Obsolete) 
•  2018 - TCP Selective Acknowledgement (SACK) 
•  2147 - TCP and UDP over IPv6 Jumbograms 
•  2414 - Increasing TCP's Initial Window 
•  2581 - TCP Slow Start and Congestion Avoidance 

(Current) 
•  2873 - TCP Processing of the IPv4 Precedence Field 
•  3168 - TCP Explicit Congestion Notification (ECN) 



© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 105 

Agenda 

•  TCP Fundamentals 
•  TCP Performance 
•  UDP 
•  RFC Collection 
•  NAT 

–  NAT Basics 
–  NAPT 
–  Virtual Server 
–  Complex NAT 
–  DNS Aspects 
–  Load Balancing 
–  RFCs 
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Private Address Range - RFC 1918 

•  Three blocks of address ranges are reserved for 
addressing of private networks 
–  10.0.0.0  - 10.255.255.255  (10/8 prefix) 
–  172.16.0.0  -  172.31.255.255  (172.16/12 prefix) 
–  192.168.0.0   -  192.168.255.255 (192.168/16 prefix) 
 

•  NAT (Network Address Translation) 
–  Performs translation between private addresses and 

globally unique addresses  
–  Was originally developed as an interim solution to combat 

IPv4 address depletion by allowing IP  addresses to be 
reused by several hosts 
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Network Address Translation (NAT) 

•  NAT  
–  First explained in RFC 1631 

•  The address reuse solution is to place Network Address 
Translators (NAT) at the borders of stub domains 

•  Each NAT box has a table consisting of pairs of local IP addresses 
and globally unique addresses performing address translation 
when passing IP Datagram's between a stub domain and the 
Internet and vice versa 

•  The IP addresses inside the stub domain are not globally unique,  
they are reused in other domains, thus solving the address 
depletion problem 

•  In most cases private addresses (RFC 1918) are used inside the 
stub domain (10.0.0.0/8, 172.16.0.0/16, 192.168.0.0/16) 
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Reasons for NAT 

• Mitigate Internet address depletion 
–  As temporary solution before IPv6 is there  

•  Save global addresses (and money) 
–  NAT is most often to map the nonroutable private address 

spaces defined by RFC 1918 to an official address 
•  10.0.0.0/8, 172.16.0.0/16, 192.168.0.0/16 

•  Conserve internal address plan 
•  TCP load sharing 

–  Several physical servers are hided behind one IP address 
and traffic to them is balanced  

•  Hide internal topology 
–  Security aspect 
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Terms (1) 

193. 99.99.1 

193.99.99.4 
Global addresses 

193. 99.99.2 

193. 99.99.3 

(NAT not necessary in this case) 

Inside 
(Stub Domain) 

Outside 
(e.g. Internet) 



© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 110 

Terms (2) 

10.1.1.1 

10.1.1.2 

10.1.1.3 
10.1.1.4 

Local addresses 

NAT 

10.1.1.1 
10.1.1.2 
10.1.1.3 
10.1.1.4 

193.99.99.1 

193.99.99.4 

193.99.99.2 
193.99.99.3 

Local  
IP address 

Global  
IP address 

Static one-to-one mapping 
(NAT-Binding) is 
maintained by router-
internal  static NAT–Table  

Inside 
(Stub Domain) 

Outside 
(e.g. Internet) 

Globally unique 
 addresses 
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Basic Principle (1) 

10.1.1.1 193.9.9.1 
10.1.1.2 193.9.9.2 

.... .... 

Local IP Global IP 

10.1.1.1 

198.5.5.55 DA 

SA 193.9.9.1 

198.5.5.55 DA 

SA 

10.1.1.1 
NAT 

198.5.5.55 
193.9.9.99 

10.1.1.2 

NAT 

Simple Static  
NAT Table 

Binding is maintained by static NAT–Table 
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Basic Principle (2) 

10.1.1.1 193.9.9.1 
10.1.1.2 193.9.9.2 

.... .... 

Local IP Global IP 

10.1.1.1 

198.5.5.55 

DA 

SA 

193.9.9.1 

198.5.5.55 

DA 

SA 

10.1.1.1 
NAT 

198.5.5.55 
193.9.9.99 

10.1.1.2 

NAT 

Simple Static  
NAT Table 

Binding is maintained by static NAT–Table 
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NAT Tasks and Behaviour      

–  Modify IP addresses according to NAT table 

–  But also must modify the IP checksum and the TCP checksum 

–  Must also look out for ICMP and modify the places where the  IP 
address appears  

 
–  There may be other places, where modifications must be done  

•  E.g. FTP, NetBIOS over TCP/IP, SNMP, DNS, Kerberos, X-Windows, 
SIP, H.323, IPsec, IKE… 

 
–  The sender and receiver (should) remain unaware that NAT is taking 

place 
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NAT Binding Possibilities 

•  Static (“Fixed Binding”) 
–  In case of one-to-one mapping of local to global addresses 

•  Dynamic (“Binding on the fly”) 
–  In case of sharing a pool of global addresses 
–  Connections initiated by private hosts are assigned a global address 

from the pool 
–  As long as the private host has an outgoing connection, it can be 

reached by incoming packets sent to this global address 
–  After the connection is terminated (or a timeout is reached), the 

binding expires, and the address is returned to the pool for reuse 
–  Is more complex because state must be maintained, and connections 

must be rejected when the pool is exhausted 
–  Unlike static binding, dynamic binding enables address reuse, 

reducing the demand for globally unique addresses. 
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Scenario Dynamic Binding 

10.1.1.1 

10.1.1.2 

10.1.1.3 
10.1.1.4 

NAT 

10.1.1.1 
10.1.1.2 
10.1.1.3 
10.1.1.4 

193.99.99.1 
193.99.99.2 

Local addresses 

Inside Outside 

Binding is maintained by 
dynamic NAT–Table  
Note: a connection state or timer 
must be maintained per mapping 

Globally unique 
 addresses 

Local  
IP address 

Global  
IP address 

Currently not possible 

Currently not possible 
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Agenda 

•  TCP Fundamentals 
•  TCP Performance 
•  UDP 
•  RFC Collection 
•  NAT 

–  NAT Basics 
–  NAPT 
–  Virtual Server 
–  Complex NAT 
–  DNS Aspects 
–  Load Balancing 
–  RFCs 
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Overloading (NAPT) 

•  Common problem:  
–  Many hosts inside initiating connections to the 

outside world 
–  But only one or a few inside-global addresses 

available 

•  Solution: 
–  Many-to-one Translation  with NAPT (Network 

Address Port Translation) 
–  Usable in context of TCP and UDP sessions 
–  Aka "Overloading Global Addresses" 
–  Aka "PAT„ (Port Address Translation) 
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NAPT Example (1) 

10.1.1.1:1034 

65.38.12.9:80 DA 

SA 10.1.1.1 

10.1.1.2 
10.1.1.2:1034 

65.38.12.9:80 DA 

SA 

173.3.8.1:2137 

65.38.12.9:80 DA 

SA 

173.3.8.1:2138 

65.38.12.9:80 DA 

SA 

65.38.12.9 

10.1.1.1:1034 

10.1.1.2:1034 

173.3.8.1:2137 

173.3.8.1:2138 

Extended Translation Table 

Global Local 

TCP 

TCP 

Prot. 

NAPT 
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10.1.1.1:1034 

65.38.12.9:80 

DA 

SA 10.1.1.1 

10.1.1.2 

10.1.1.2:1034 

65.38.12.9:80 

DA 

SA 

173.3.8.1:2137 

65.38.12.9:80 

DA 

SA 

173.3.8.1:2138 

65.38.12.9:80 

DA 

SA 

65.38.12.9 

NAPT Example (2) 

Extended Translation Table 

10.1.1.1:1034 

10.1.1.2:1034 

173.3.8.1:2137 

173.3.8.1:2138 

Global Local 

TCP 

TCP 

Prot. 

NAPT 
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Agenda 

•  TCP Fundamentals 
•  TCP Performance 
•  UDP 
•  RFC Collection 
•  NAT 

–  NAT Basics 
–  NAPT 
–  Virtual Server 
–  Complex NAT 
–  DNS Aspects 
–  Load Balancing 
–  RFCs 
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Virtual Server Table 

•  Problem:  
–  How to reach an inside server from the outside 
–  NAPT/NAT let IP datagram's (with UDP or TCP 

segments as payload) from to outside only in if a 
binding is found 

–  But server waits for connections from the outside 
hence cannot install binding in the NAPT/NAT device 

•  Solution: 
–  Virtual Server Table 
–  Creating manually a static binding in the NAPT/NAT 

device to forward IP datagram's to the real inside 
server 
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10.1.1.1:25 

65.38.12.9:1039 

DA 

SA 10.1.1.1 

10.1.1.2 

10.1.1.2:80 

65.38.12.9:1040 

DA 

SA 

173.3.8.1:25 

65.38.12.9:1039 

DA 

SA 

173.3.8.1:80 

65.38.12.9:1040 

DA 

SA 

65.38.12.9 

Virtual Server Table Example 

Extended Translation Table 

10.1.1.1:25 

10.1.1.2:80 

173.3.8.1:25 

173.3.8.1:80 

Global Local 

TCP 

TCP 

Prot. 

NAPT 
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Agenda 

•  TCP Fundamentals 
•  TCP Performance 
•  UDP 
•  RFC Collection 
•  NAT 

–  NAT Basics 
–  NAPT 
–  Virtual Server 
–  Complex NAT 
–  DNS Aspects 
–  Load Balancing 
–  RFCs 
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Terms Used in complex NAT Devices  
–  Local versus global address 

•  Reflects area of usage (inside or outside) 

–  Inside versus outside world 
•  Reflects the origin 

Inside Network Outside Network 

NAT Inside Local 

Outside Local DA 

SA Inside Global 

Outside Global DA 

SA 

Outside Global 

Inside Global DA 

SA Outside Local 

Inside Local DA 

SA 

FYI 
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Static NAT Example with New Terms 

10.1.1.1 

10.1.1.2 

10.1.1.3 
10.1.1.4 

Local addresses 

NAT 

Inside 
(Stub Domain) 

Outside 
(e.g. Internet) 

Inside Local 
IP address 

Inside Global  
IP address 

Binding is maintained by 
static NAT–Table  

Globally unique 
 addresses 

10.1.1.1 
10.1.1.2 
10.1.1.3 
10.1.1.4 

193.99.99.1 

193.99.99.4 

193.99.99.2 
193.99.99.3 
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Basic Principle (1a) with New Terms 
Inside Address Translation 

10.1.1.1 193.9.9.1 
10.1.1.2 193.9.9.2 

.... .... 

Inside Local IP Inside Global IP 

10.1.1.1 

198.5.5.55 DA 

SA 193.9.9.1 

198.5.5.55 DA 

SA 

10.1.1.1 
NAT 

198.5.5.55 
193.9.9.99 

10.1.1.2 

NAT 

Simple NAT Table 
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Basic Principle (1b) with New Terms 
Inside Address Translation 

10.1.1.1 193.9.9.1 
10.1.1.2 193.9.9.2 

.... .... 

Inside Local IP Inside Global IP 

Simple NAT Table 

10.1.1.1 

198.5.5.55 

DA 

SA 

193.9.9.1 

198.5.5.55 

DA 

SA 

10.1.1.1 
NAT 

198.5.5.55 
193.9.9.99 

10.1.1.2 

NAT 
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Overlapping Networks 

= Same addresses are used 
locally  and  globally 

What can 
happen? 
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Outside Address Translation 

9.3.1.2 
193.9.9.2 

x.x.x.x DA 

SA 

Hidden 9.0.0.0 
network 

9.3.1.8 

193.9.9.2 DA 

SA 

Packet came from 
"true" 9.0.0.0 

network 

10.0.0.8 

9.3.1.2 DA 

SA 

9.3.1.8 

9.3.1.2 193.9.9.2 10.0.0.8 9.3.1.8 

Outside Local Inside Global Inside Local Outside Global 
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Agenda 

•  TCP Fundamentals 
•  TCP Performance 
•  UDP 
•  RFC Collection 
•  NAT 

–  NAT Basics 
–  NAPT 
–  Virtual Server 
–  Complex NAT 
–  DNS Aspects 
–  Load Balancing 
–  RFCs 
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DNS Problem (1) 

9.3.1.2 

"Jahoo" 
9.3.1.8 

DNS server 
195.44.33.11 

DNS request for host "Jahoo" 
SA=9.3.1.2 / DA=195.44.33.11 

Hidden 9.3.1.0/24 
network Legal 9.3.1.0/24 

network 
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DNS Problem (2) 

DNS server 
195.44.33.11 

DNS request for host "Jahoo" 
SA=178.12.99.3 / DA=195.44.33.11 
 

9.3.1.2 

"Jahoo" 
9.3.1.8 
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DNS Problem (3) 

DNS server 
195.44.33.11 

DNS reply: host "Jahoo" is 9.3.1.8 
SA=195.44.33.11 / DA= 178.12.99.3 
 

!OVERLAPPING ALERT!  
We cannot tell our hosts  

that "Jahoo" has IP address 9.3.1.8... 
They would think that Jahoo is inside  

and would try a direct delivery...!!! 

9.3.1.2 

"Jahoo" 
9.3.1.8 
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DNS Problem (4) 

DNS server 
195.44.33.11 

DNS reply: host "Jahoo" is 7.7.7.7  
SA= 195.44.33.11 / DA=9.3.1.2  
 

Now my hosts forward 
traffic to me as Default 
Gateway to the Internet 

9.3.1.2 

"Jahoo" 
9.3.1.8 
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DNS Problem (5) 

DNS server 
195.44.33.11 

Message for host "Jahoo" 
SA=9.3.1.2 / DA=7.7.7.7 

DA=7.7.7.7...? 
 Must be translated 

9.3.1.2 

"Jahoo" 
9.3.1.8 
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DNS Problem (6) 

DNS server 
195.44.33.11 

Message for host "Jahoo" 
SA=178.12.99.3 / DA=9.3.1.8 

9.3.1.2 178.12.99.3 9.3.1.8 7.7.7.7 
Inside Local Inside Global Outside Global Outside Local NAT 

 Table 

9.3.1.2 

"Jahoo" 
9.3.1.8 
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Agenda 

•  TCP Fundamentals 
•  TCP Performance 
•  UDP 
•  RFC Collection 
•  NAT 

–  NAT Basics 
–  NAPT 
–  Virtual Server 
–  Complex NAT 
–  DNS Aspects 
–  Load Balancing 
–  RFCs 
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TCP Load Sharing (1) 

• Multiple servers represented by a single inside-
global IP address 
–  Virtual host address 

•  New TCP session requests to the Virtual Host 
are forwarded to one of a group of real hosts 
–  Rotary group 
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TCP Load Sharing (2) 

5.5.5.5 

1.0.0.1 

1.0.0.2 

1.0.0.3 

1.0.0.240 

TCP Connection Request 
DA= 1.0.0.240 : 23 
SA= 4.4.4.4 : 3931  

4.4.4.4 

6.6.6.6 
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TCP Load Sharing (3) 

5.5.5.5 

1.0.0.1 

1.0.0.2 

1.0.0.3 

1.0.0.240 

TCP Connection Request 
DA= 1.0.0.1 : 23 
SA= 4.4.4.4 : 3931  

4.4.4.4 

6.6.6.6 1.0.0.1:23 1.0.0.240:23 4.4.4.4:3931 TCP 
Inside Local Inside Global Outside Global Prot. 
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TCP Load Sharing (4) 

5.5.5.5 

1.0.0.1 

1.0.0.2 

1.0.0.3 

1.0.0.240 

TCP Flow 
DA= 4.4.4.4 : 3931  
SA= 1.0.0.1 : 23 

4.4.4.4 

6.6.6.6 1.0.0.1:23 1.0.0.240:23 4.4.4.4:3931 TCP 
Inside Local Inside Global Outside Global Prot. 
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TCP Load Sharing (5) 

5.5.5.5 

1.0.0.1 

1.0.0.2 

1.0.0.3 

1.0.0.240 

TCP Flow 
DA= 4.4.4.4 : 3931  
SA= 1.0.0.240:23 

4.4.4.4 

6.6.6.6 
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TCP Load Sharing (6) 

5.5.5.5 

1.0.0.1 

1.0.0.2 

1.0.0.3 

1.0.0.240 

TCP Connection Request 
DA= 1.0.0.240 : 23 
SA= 5.5.5.5 : 1297  

4.4.4.4 

6.6.6.6 

TCP Connection Request 
DA= 1.0.0.240 : 23 
SA= 6.6.6.6 : 8748 



© 2016, D.I. Lindner / D.I. Haas TCP, UDP, NAT v6.0 144 

TCP Load Sharing (7) 

5.5.5.5 

1.0.0.1 

1.0.0.2 

1.0.0.3 

1.0.0.240 

TCP Connection Request 
DA= 1.0.0.2 : 23 
SA= 5.5.5.5 : 1297 

4.4.4.4 

6.6.6.6 1.0.0.1:23 1.0.0.240:23 4.4.4.4:3931 TCP 
Inside Local Inside Global Outside Global Prot. 

TCP Connection Request 
DA= 1.0.0.3 : 23 
SA= 6.6.6.6 : 8748 

1.0.0.2:23 1.0.0.240:23 5.5.5.5:1297 TCP 
1.0.0.3:23 1.0.0.240:23 6.6.6.6:8748 TCP 
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Agenda 

•  TCP Fundamentals 
•  TCP Performance 
•  UDP 
•  RFC Collection 
•  NAT 

–  NAT Basics 
–  NAPT 
–  Virtual Server 
–  Complex NAT 
–  DNS Aspects 
–  Load Balancing 
–  RFCs 
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Further Information 

•  RFC 1631 
–  NAT 

•  RFC 2391 
–  Load Sharing Using IP Network Address Translation (LSNAT) 

•  RFC 2666 
–  IP Network Address Translator (NAT) Terminology and 

Considerations 
•  RFC 2694 

–  DNS ALG 
•  RFC 2776 

–  Network Address Translation Protocol Translation (NAT-PT) 
•  RFC 2993 

–  Architectural Implications of NAT 
•  RFC 3022 

–  Traditional IP Network Address Translator (Traditional NAT) 
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Further Information 

•  RFC 3027 
–  Protocol Complications with the IP Network Address Translator, 

•  RFC 3235  
–  Network Address Translator (NAT)-Friendly Application Design 

Guidelines 

•  RFC3303  
–  Middlebox Communication Architecture and Framework 

•  RFC 3424  
–  IAB Considerations for Unilateral Self Address Fixing (UNSAF) Across 

Network Address Translation 

•  RFC 3715  
–  IPsec—Network Address Translation (NAT) Compatibility 

Requirements 
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Further Information 

•  RFC 3489 STUN  
–  Simple Traversal of User Datagram Protocol (UDP) Through Network 

Address Translators (NATs) March  2003 (Obsoleted by RFC5389) 

•  RFC 5389  
–  Session Traversal Utilities for NAT (STUN) October 2008 (Obsoletes 

RFC3489) (Status: PROPOSED STANDARD) 

•  Internet Protocol Journal 
–  www.cisco.com/ipj 

•  Issue Volume 3, Number 4 (December 2000) 
•  „The Trouble with NAT“ 
•  Issue Volume 7, Number 3 (September 2004) 
•  „Anatomy (of  NAT)“ 


