LAN, Legacy Ethernet, Bridging

LAN Introduction, IEEE Standards, Logical Link Control (LLC), Ethernet Fundamentals, Bridging Fundamentals, Bridging vs. Routing

Agenda

- Introduction to LAN
- IEEE 802
- Logical Link Control
- Legacy Ethernet
 - Introduction
 - CSMA/CD
 - Repeater, Link Segments
 - Framing
- Transparent Bridging
- Bridging versus Routing

LAN History

Local Area Network (LAN), invented late 70s

- Initially designed for a common transmission medium
 - Shared media
- High speed
 - 4 Mbit/s, 10 Mbit/s, 16 Mbit/s, 100 Mbit/s
 - nowadays up to 10 Gbit/s
- Limited distance
 - Up to some km -> hence local
- High speed
 - Did not allow any network elements with store and forward behavior
- Therefore simple topologies
 - Bus, ring, star
- Base for distributed computing

LAN Communication

LAN = Natural Broadcast Medium

MAC (Media Access Control) and L2 addressing is needed

LAN and Ethernet Fundamentals, v6.0

6 Byte MAC Addresses

MAC Address Structure

- Each vendor of networking component can apply for an unique vendor code
- Administered by IEEE
- Called "Burnt In" Address (BIA)

Storage Format of 802.3 MAC-Address

• Basic rule:

 I/G bit must be the first bit on the medium, so the transmitted address must have the following format:

I/G	U/L	b45,, b40	b39,, b32	 b15,, b8	b7,, b1, b0
0	1	00 1000		 0000 0000	1100 0001

- <u>802.3 sends the least significant bit of each octet at first</u>
 - So 802.3 must store each octet in memory in reverse order:
 - also called <u>"Canonical" Format</u>

<mark>b40,, b45</mark>	U/L	. <mark>I/G</mark>	b32,, b39	 b8,, b15	b0, b1,, b7
0001 00	1	0	0000 0000	 0000 0000	1000 0011

LAN: Only OSI Layer 1, 2 Needed L2 Unicast Communication

© 2016, D.I. Lindner / D.I. Haas

LAN and Ethernet Fundamentals, v6.0

L2 Broadcast Communication

© 2016, D.I. Lindner / D.I. Haas

L2 Multicast Communication

Agenda

- Introduction to LAN
- IEEE 802
- Logical Link Control
- Legacy Ethernet
 - Introduction
 - CSMA/CD
 - Repeater, Link Segments
 - Framing
- Transparent Bridging
- Bridging versus Routing

IEEE 802

- LAN Standardization is done
 - By IEEE (Institute of Electrical and Electronics Engineers)
 - Workgroup 802 (Start: February 1980)
- OSI Data Link Layer (Layer 2)
 - Was originally designed for point-to-point line
 - But LAN = multipoint line, shared media
- Therefore OSI Layer 2 was split into two sublayers
 - Logical Link Control
 - Media Access Control

IEEE 802 Layer Model

The IEEE Working Groups

- 802.1 Higher Layer LAN Protocols
- 802.2 Logical Link Control
- 802.3 Ethernet
- 802.4 Token Bus
- 802.5 Token Ring
- 802.6 Metropolitan Area Network (DQDB, MAN)
- 802.7 Broadband TAG
- 802.8 Fiber Optic TAG
- 802.9 Isochronous LAN
- 802.10 Security
- 802.11 Wireless LAN (WLAN)
- 802.12 Demand Priority (VGAnyLAN)
- 802.13 Not Used

Superstition?

- 802.14 Cable Modem
- 802.15 Wireless Personal Area Network (Bluetooth)
- 802.16 Broadband Wireless Access
- 802.17 Resilient Packet Ring

Tasks of LAN Layers

- Physical layer (PHY) specifies actual transmission technique
- Provides
 - Electrical/optical specification
 - Mechanical interface
 - Encoding
 - Bit synchronisation
- Consists of
 - MAU (Medium Attachment Unit)
 - AUI (Attachment Unit Interface)
 - PLS (Physical Layer Signalling)
 - Later expanded by PCS, PMA, PMD

Tasks of LAN Layers

- MAC (Media Access Control) takes care for medium access algorithms, framing, addressing and error detection
 - Avoid collisions
 - Grant fairness
 - Handle priority frames
- LLC (Logical Link Control) provides original services of data link layer
 - <u>"HDLC on LAN"</u>
 - Connection-oriented services with error-recovery
 - Connection-less service (best-effort)
 - SAPs (Service Access Points) for the higher layers

IEEE 802.1 Standards

Specifies a common framework for all 802.x LANs

- Addressing rules, relations to the OSI model
- Subnet addressing, Bridging Ethernetv2 to 802.2 LANs
- Management (802.1B)
- Bridging (802.1D-1998) including STP (Spanning Tree Protocol)
 - Single STP in case of VLANs
- System Load Protocol (802.1E)
- Virtual (V) LANs (802.1Q)
 - Tagging
- STP Rapid Configuration (802.1w or 802.1D-2004)
- Multiple STP (802.1Q-2003)
 - Multiple STP instances in case of VLANs
- EAP Authentication (802.1x)
 - Extensible Authentication Protocol

Agenda

- Introduction to LAN
- IEEE 802
- Logical Link Control
- Legacy Ethernet
 - Introduction
 - CSMA/CD
 - Repeater, Link Segments
 - Framing
- Transparent Bridging
- Bridging versus Routing

IEEE LAN Framing

- Every IEEE LAN/MAN protocol carries the Logical Link Control header
 - DSAP (Destination Service Access Point),
 - SSAP (Source Service Access Point)
 - Control Field = HDLC heritage

Protocol Stack Distinction

SAP Identifiers

- 128 possible values for protocol identifiers
- Examples:
 - 0x42 ... Spanning Tree Protocol 802.1d
 - 0xAA... SNAP
 - 0xF0... NetBIOS
 - 0xE0... Novell
 - 0x06... IP (but not used because IP rides on top of Ethernetv2)

LLC Control Field = HDLC Control Field

	0	1	2	6	7	8	9	10 14	15	
	0		N(S)			P/F		N(R)		I - format (Information)
	1	0	S S	x x	X	P/F		N(R)		S - format (Supervisory)
			I	I						
_	0	1	2 3	4	5	6	7	l.		
	1	1	ММ	P/F	ſ	MMN	1			U - format
								l		(Unnumbered)
	N((S), I	N(R) s	send-	and	recei	ve -	sequence numb	ers	

S S, MMM selection bits for several functions
P / F poll / final bit (P in commands, F in responses; distinction of commands and responses through a dedicated SSAP bit -> C/R bit)

LLC Frame Types and Classes

	Cread	and Construct		Control	I.	Cl	lass	
	Cma	Control	Resp	Control	1	2	3	4
Type 1	UI XID TEST	1100p000 1111p111 1100p111	XID TEST	1111f111 1100f111	x x x	x x x	x x x	X X X
Type 2	I RR RNR REJ SABME DISC	0 n(s) pn(r) 10000000 pn(r) 10100000 pn(r) 10010000 pn(r) 1111p110 1100p010	I RR RNR REJ UA DM FRMR	0 n(s) f n(r) 10000000 f n(r) 10100000 f n(r) 10010000 f n(r) 1100f110 1111f001 1110f001		x x x x x x x x		X X X X X X X
Туре 3	AC0 AC1	1110p110 1110p111	AC0 AC1	1110f110 1110f111			x x	X X

LLC Service Methods:

– <u>Class 1</u>:

- Connectionless unacknowledged service (datagram)
- Type 1 frames: UI,XID,TEST
- <u>Class 2</u>:
 - Connection oriented service plus Class 1
 - Type 2 frames: I,RR,RNR,REJ, SABME,UA,DM
- <u>Class 3</u>:
 - Class 1 plus connectionless acknowledged service
 - Type 1 -frames plus additional type 3 frames: AC0, AC1

– <u>Class 4</u>:

- Class 2 plus connectionless acknowledged service
- Type 2 frames plus additional type 3 frames: AC0, AC1

Agenda

- Introduction to LAN
- IEEE 802
- Logical Link Control
- Legacy Ethernet
 - Introduction
 - CSMA/CD
 - Repeater, Link Segments
 - Framing
- Transparent Bridging
- Bridging versus Routing

"Ethernet works in practice but not in theory."

Robert Metcalfe

History (1)

- Late 1960s: Aloha protocol University of Hawaii
- Late 1972: Robert Metcalfe developed first Ethernet system based on CSMA/CD
 - Xerox Palo Alto Research Center (PARC)
 - Exponential Backoff Algorithm was key to success (compared with Aloha)
 - 2.94 Mbit/s

© 2016

Original Ethernet Frame

27

Sync	Destination Address	Source Address	Data	CRC
1	8	8	about 4000 bits	16
D.I. Lindner / D.I. Haas			LAN and Ethernet Fundamentals, v6.0	

History (2)

- 1976: Robert Metcalfe released the famous paper:
 - "Ethernet: Distributed Packet Switching for Local Computer Networks"
 - In our context it would be better to call it "Asynchronous TDM on a Shared Wire" because there is no thing such an active packet switch
 - TRANSCEWER TAP TRANSCEWER TAP TRANSCEWER INTERFACE CARLE INTERFACE CONTROLLER TERMINARCR THE ETHER

Original sketch

Basic Idea of Ethernet Bus System

shared media used in half duplex mode (coax cable)

History (3)

- 1978: Patent for Ethernet-Repeater
- 1980: DEC, Intel, Xerox (DIX) published the 10 Mbit/s Ethernet standard (Ev1)
 - "Ethernet II" was latest release (DIX V2.0)
- Feb 1980: IEEE founded workgroup 802
- 1985: The LAN standard IEEE 802.3 had been released
 - Two types with baseband transmission with Manchester encoding, 10 Mbit/s
 - 10Base5 "Yellow Cable"
 - 10Base2 "Cheapernet"
 - One type with broadband transmission
 - 10Broad36 (modulation of carrier) -> like cable TV

10Base5 Parameter

- maximal number of stations: 100
- attachable only at marked points
- cable splitting via coax couplers
- individual cable parts have a length of 23,4m or 70,2m or 117,5m (wave minimum on standing waves due to inhomogeneous media)
- smallest bending radius: 254mm

AUI-Connection with 10Base5 Transceiver

- maximal number of stations: 30
- attachable at any points
- smallest bending radius: 50 mm

Integrated Transceiver for 10Base2

Agenda

- Introduction to LAN
- IEEE 802
- Logical Link Control
- Legacy Ethernet
 - Introduction
 - <u>CSMA/CD</u>
 - Repeater, Link Segments
 - Framing
- Transparent Bridging
- Bridging versus Routing

CSMA/CD (1)

 Carrier Sense Multiple Access / Collision Detection

- Improvement of ALOHA
- "Listen before talk" plus
- "Listen while talk"
- Fast and low-overhead way to resolve any simultaneous transmissions

- 1) Listen if a station is currently sending
- 2) If wire is empty, send frame
- 3) Listen during sending if collision occurs
- 4) Upon collision stop sending
- 5) Wait a random time before retry
CSMA/CD (2)

- Details:
 - Access control based on contention
 - Network stations listen to the bus before they start a transmission
 - Network stations can detect ongoing transmission (CS) and will not start own transmission before ongoing transmission is over
 - But still simultaneous transmissions (MA) cause collisions
 - Collisions are detected (CD) by observing the DC-level on the medium
 - Bus conflict

CSMA/CD (3)

Conflict resolution:

- Aborting of transmission by all involved stations
- Sending of a JAM-signal (32 bit)
 - To make sure that every station can recognize the collision
 - Collision is spread to a minimum length
- Starting a random number generator to create a timeout value
 - Truncated binary exponential backoff algorithm (the more often a collision occurs the larger is the range for the random number)
- After timeout expired, station attempts a retransmission
- Number of retransmission-trials is limited to 16
 - After 16 collisions in a sequence a error is signaled to the higher layer

Collision Window / Slot Time

Slot Time

- Minimum frame length has to be defined in order to safely detect collisions
- Each frame sent must stay on wire for a RTT duration – at least
- This duration is called "slot time" and has been standardized to be 512 bit-times
 - 51,2 µs for 10 Mbit/s
 - Hence minimal frame length is 64 byte
 - Note:
 - The request for fairness limits the maximum frame size, too
 - 1518 byte is the maximum allowed frame size

Slot Time Consequences

- So minimum frame length is 512 bits (64 bytes)
- With signal speed of 0.6c and the delay caused by electronic circuits such as interface cards and repeaters the RTT of 512 bit times allows a network diameter of
 - 2500 meters with 10 Mbit/s
 - 250 meters with 100 Mbit/s
 - 25 meters with 1000 Mbit/s (!)

Collision Extended by JAM Signal !

Exponential Backoff

- Most important idea of Ethernet !
- Provides maximal utilization of bandwidth
 - After collision, set basic delay = slot time
 - Total delay = basic delay * random
 - 0 <= random < 2^k</p>
 - k = min (number of transmission attempts, 10)
- Allows channel utilization
- After 16 successive collisions
 - Frame is discarded
 - Error message to higher layer
 - Next frame is processed, if any

Truncated Backoff (k<=10)

- 1024 potential "slots" for a station
- Thus maximum 1024 stations allowed on half-duplex Ethernet

Channel Capture

- Short-term unfairness on very high network loads
- Stations with lower collision counter tend to continue winning
- 10 times harder to occur on 100 Mbit/s Ethernet
- Rare phenomena, so no solution against it

Agenda

- Introduction to LAN
- IEEE 802
- Logical Link Control
- Legacy Ethernet
 - Introduction
 - CSMA/CD
 - Repeater, Link Segments
 - Framing
- Transparent Bridging
- Bridging versus Routing

Local / Remote Repeater

Multiport Repeater - One Collision Domain

Structured Cabling (Building / Campus)

Multiport Repeater as "Hub"

Repeater-Rules

Agenda

- Introduction
- IEEE 802
- Logical Link Control
- Ethernet
 - Introduction
 - CSMA/CD
 - Elements and Basic Media-Types
 - Repeater, Link Segments
 - Framing
- Transparent Bridging
- Bridging versus Routing

Ethernet Version 2 Frame (aka DIX Frame -> DEC, Intel, Xerox)

Ethernet Version 2 ("Ethernet II") Preamble DA SA data FCS **Ivpe** > 1518 Preamble For clock synchronization (64 Bit) (62 bits 10101.....01010 + 2 bits 11 as SD) DADestination MAC-Address (48 Bit) SASource MAC-Address (48 Bit) TypeProtocol-type field (16 Bit) DataPayload FCS Frame Check Sequence (32 Bit) based on CRC (Cyclic Redundancy Check)

DIX Type Field

2-bytes Type field to identify payload (protocols carried)

- Most important: IP type 0x800

• No length field

"THE" Ethernet Frame

IEEE 802.3/802.2 Frame

- Ethernet II and 802.3 can coexist on the same cable, but each associated sending and receiving station must use the same format.
- Fortunately all type-field values are larger than 1518 (max frame length), so any incoming frame can be recognized and handled properly.

SNAP Frame

- Demand for carrying type-field in 802.4, 802.5, 802.6, ... also !
 - Convergence protocol was needed to transport Ethernet V2 type information over IEEE LANs -> SNAP
- Subnetwork Access Protocol (SNAP) header introduced
 - If DSAP=SSAP=0xAA and Ctrl=0x03
 - then a 5 byte SNAP header follows containing 3 bytes organizational code plus 2 byte DIX type field

Frame Types Summary

802.3 with 802.2 (SAP)

Agenda

- Introduction to LAN
- IEEE 802
- Logical Link Control
- Legacy Ethernet
 - Introduction
 - CSMA/CD
 - Repeater, Link Segments
 - Framing
- Transparent Bridging
- Bridging versus Routing

What is Bridging?

- Packet switching principle in connectionless mode applied to layer 2
 - The already well known store and forward principle of WAN world (OSI layer 3 intermediate system) was taken by the LAN community

• Adapted to work with MAC addresses

 Instead of unique and structured OSI layer 3 (routable) addresses we have only unique and unstructured OSI Layer 2 (MAC) addresses

• The bridging table or MAC address table

- Is used for forwarding decisions in the same way as a routing table already outline in chapter "Network Principles"
- Signposts to reach a given MAC address by pointing to the corresponding physical port
 - MAC address -> Port mapping

Why Packet Switching on LAN?

- LAN was originally designed for shared media
 - But too many clients cause performance problems
 - Higher probability for collisions in case of Ethernet
- Bridge separates two (or more) shared-media LAN segments
 - Only frames destined to the other LAN segment are forwarded, frames destined to own LAN segment are not forwarded
 - Number of collisions reduced (!)
- Different bridging principles
 - Ethernet: Transparent Bridging
 - Token Ring: Source Route Bridging

OSI Comparison

Bridging is

- Connectionless packet switching on OSI layer
 2 using unique but unstructured MAC addresses without any topology information
- L2 Signposts in the MAC address table

• Routing is

- Connectionless packet switching on OSI layer 3 using unique and structured addresses which contain topology information
- L3 Signposts in the routing table

Bridging versus Routing

- Bridging works on OSI layer 2
 - Forwarding of frames
 - Use MAC addresses only
 - Termination of physical layer (!)
 - Invisible for end-systems on a bridged LAN
- Routing works on OSI layer 3
 - Forwarding of packets
 - Use routable addresses only (e.g. IP)
 - Termination of both layer 1 and 2
 - Visible for end-systems (e.g. default router in IP)

Bridge History

- Bridges came after routers!
- First bridge designed by Radia Perlman
 - Ethernet has size limitations
 - Routers were single protocol and expensive
- STP (Spanning Tree Protocol)
 - Is an important part of any bridged network
 - Ethernet has no hop count (or IP time-to-live field) to implement a kill mechanism in case of loops
- IEEE 802.1D contains
 - Transparent bridging and STP

What is an Ethernet Switch?

- A switch is basically a bridge, differences are only:
 - Faster because implemented in HW
 - Multiple ports
 - Improved functionality (e.g. VLAN)

• Don't confuse it with WAN Switching!

- Completely different !
- Connection oriented (stateful) VCs

Transparent Bridging

- Designed for "plug & play"
- Upon startup a bridge knows nothing
 - MAC address table is empty
 - Exceptional case: static entries are configured by the network administrator, but that is hard work

Bridge is in learning mode

- Dynamic entries are built on the fly

Learning

- Once stations send frames the bridge notices the source MAC address
 - Entered in bridging table
- Frames for unknown destinations are flooded
 - Forwarded on all ports. Same rule applies to Ethernet broadcast and multicast

Learning -> Table Filling (1)

- If the destination address matches a bridging table entry, this frame can be actively
 - Forwarded if reachable via other port
 - Filtered if reachable on same port

Table Filling (2)

Table Filling (3)

- After some time the location of every station is known – simply by listening!
- Now only forwarding and filtering of frames
 - Based on destination address

Table Filling – Forwarding

Collision domains are separated

- Frames can travel in their LAN segments at the same time

Table Filled – Filtering

- Frames whose source and destination address are reachable over the same bridge port are filtered
- Entries times out

Last Seen – Last Win

- Now assume notebook with MAC A is moved
- Address is immediately relearned
 - With the first frame containing source MAC A on the other port
- Imagine the problem
 - If there are duplicated MAC address in the LAN !!!

Most Important !

- Bridge separates LAN into multiple <u>collision</u> <u>domains</u>
- A bridged network is still one broadcast domain
 - L2 broadcast and L2 multicast frames are always flooded
- A switched network works the same way as a bridged network
 - Ethernet switch instead good old bridge
- A router separates the whole LAN into multiple broadcast domains
 - L2 broadcast are therefore limited to a location and does not spread over the whole network

Remote Bridging ? (!!! TB means Broadcast Domain!!)

Bridging Problems

Redundant paths lead to

- Endless cycling of frames
- Continuous table rewriting
- Blocking of buffer-resources
- Stagnation of the LAN
- Broadcast storms
- To eliminate these unwanted effects
 - Spanning Tree Protocol (STP) is necessary

No load sharing possible and no ability to select best path

It is just bridging and not routing

Endless Circling

Endless circling following the other path

For simplicity we only follow one path

Broadcast Storm (1)

Broadcast Storm (2)

Table Rewriting (Unknown Destination) 1

Table Rewriting (Unknown Destination) 2

Table Rewriting (Unknown Destination) 3

Spanning Tree

- Invented by *Radia Perlman* as general "mesh-totree" algorithm
- A must in bridged networks with redundant paths
- Only one purpose: cut off redundant paths with highest costs

STP in Action (1) No Broadcast Storm

STP in Action (2) Bridge Failure – New STP Topology

Agenda

- Introduction to LAN
- IEEE 802
- Logical Link Control
- Legacy Ethernet
 - Introduction
 - CSMA/CD
 - Repeater, Link Segments
 - Framing
- Transparent Bridging
- Bridging versus Routing

Bridging versus Routing

Bridging

Depends on MAC addresses only

Bridge must process every frame

Number of table-entries = number of all devices in the whole network

Spanning Tree eliminates redundant lines; no load balance is possible

Routing

Requires structured addresses (must be configured)

End system must know its default-router

Router processes only packets addressed to it

Number of table-entries = number of IP networks (Net-IDs) only

Redundant lines and load balance are possible

Flow control is possible in theory (router is seen by end systems) but ICMP source quench is not the right way

Bridging versus Routing

Bridging

No LAN/WAN coupling because of high traffic (broadcast domain!)

Paths selected by STP may not match communication behavior/needs of end systems

Faster, because implemented in HW; no address resolution

Location change of an end-system does not require updating any addresses

Spanning tree necessary against endless circling of frames and broadcast storms, STP lacks from a global view of the network topology

Routing

Does not stress WAN with subnet's L2 broad- or multicasts; commonly used as "gateway"

Router knows best way for every destination a packet is sent for

Slower, because usually implemented in SW; address resolution (ARP) necessary; hardware-optimization overcomes this nowadays

Location change of an end-system requires adjustment of layer 3 address

Routing-protocols necessary to determine network topology, modern link-state routing has network topology database in router and hence a global view

Example Topology for Review Bridging

Frame MAC A to MAC D (1)

Frame MAC A to MAC D (2)

Frame MAC A to MAC D (3)

Frame MAC A to MAC D (4)

Frame MAC C to MAC D (1)

Frame MAC C to MAC D (2)

Frame MAC C to MAC D (3) Takes Same Path as Frame from MAC A to MAC D -> No Load Distribution

Frame MAC C to MAC D (4)

Requirements for Routing

- Consistent layer-3 functionality
 - For entire transport system
 - From one end-system over all routers in between to the other end-system
 - Hence routing is not protocol-transparent
 - all elements must speak the same "language"

• End-system

- Must know about default router
- On location change, end-system must adjust its layer 3 address

• To keep the routing tables consistent

 Routers must exchange information about the network topology by using <u>routing-protocols</u> or network administrator has to configure static routes in all routers

Routing Facts

1

In contrast to bridges

- Router maintains only the network of the layer 3 addresses in its routing table
- The routing table size is <u>direct proportional to the number</u> of networks and not to the number of end-systems

Transport on a given subnet

- Still relies on layer 2 addresses
- End systems forward data packets for remote destinations
 - To a selected router (default gateway, default router) using the router's MAC-address as destination
 - Only these (unicast MAC addressed) packets must be processed by the router

- Flow control between router and end system is principally possible
 - End systems knows about the local router
- L2 Broadcast/multicast-packets in the particular subnet
 - Are blocked by the router so L2 broad/multicast traffic on the subnets doesn't stress WAN connections
- Independent of layer 1, 2
 - so coupling of heterogeneous networks is possible
- Routers can use redundant paths

- meshed topologies are usual

Routers can use parallel paths for load balancing

Example Topology for Intro Routing

Packet 1.1 to 3.1 (1)

Packet 1.1 to 3.1 (2)

Packet 1.1 to 3.1 (3)

Packet 2.1 to 3.1 (1)

Packet 2.1 to 3.1 (2)

Packet 2.1 to 3.1 (3) Takes Different Path as Packet from 1.1 to 1.3 -> Load Distribution

Packet 2.1 to 3.1 (3)

