Protocol Principles

Layering, CL vs. CO Protocols, Best-Effort vs. Reliable Services ARQ Techniques, Sequence Numbers, Windowing, Bandwidth-Delay Product, Flow Control, HDLC

Agenda

- Introduction
- ARQ Techniques
 - Introduction
 - Idle RQ
 - Continuous RQ
 - Selective Acknowledgement
 - GoBackN
 - Positive Acknowledgement
 - Selective Reject
 - Sequence Numbers and Windowing
 - Bandwidth-Delay Product
 - Flow Control
 - HDLC Overview

Line Protocols

 Line protocols regulate and control communication between two devices over a point-to-point line

Basic elements

- Frame synchronization
- Frame protection
- Error detection
- Usually implemented in hardware

Optional elements

- Connection and line management
- Addressing
- Error recovery
- Flow control
- Usually implemented in software

Three Important Principles for Data Communication

Layering

 Structuring the complex task of data communication into smaller pieces by usage of "layers"

Services

 Are provided by a layer to the upper layer and describe what is exchanged between layers within a system

Protocols

Are used for communication between the systems (peers) within a layer

Point-to-Point Communication 3 Layer Model

Best-Effort Service: Connection-less Protocol

Station A

Reliable Service: Connection-oriented Protocol

Connection-oriented Protocols

Different definitions

- Some say "protocols without addressing information" and think of circuit-switched technologies
- Some say "protocols that do error recovery"

Correct: "protocols that require a connection establishment before sending data and a disconnection procedure when finished"

Agenda

- Introduction
- ARQ Techniques
 - Introduction
 - Idle RQ
 - Continuous RQ
 - Selective Acknowledgement
 - GoBackN
 - Positive Acknowledgement
 - Selective Reject
 - Sequence Numbers and Windowing
 - Bandwidth Delay Product
 - Flow Control
 - HDLC Overview

ARQ Techniques Overview

- ARQ protocols guarantee correct delivery of data
 - Error recovery by usage of feedback error control
 - Retransmission of data (information) frames after errors are detected by the receiver

• Basic Method:

- Receiver acknowledges correct receipt of data frame by sending special control frames (ACK) in opposite direction
- Acknowledgements refer to identifiers (sequence numbers) carried in the protocol header of the original data frame (I)

Com-SW Layer Implementation Necessary Resource Elements

Com-SW Layer Implementation Necessary Protocol Elements

Remember Control Field (Generic Frame Format)

ARQ Variants

Idle-RQ

Continuous-RQ

- Selective ACK (SACK)
- GoBackN
- Positive ACK
- Selective Reject (SREJ)

Idle-RQ versus Continuous-RQ

Agenda

- Introduction
- ARQ Techniques
 - Introduction
 - Idle RQ
 - Continuous RQ
 - Selective Acknowledgement
 - GoBackN
 - Positive Acknowledgement
 - Selective Reject
 - Sequence Numbers and Windowing
 - Bandwidth-Delay Product
 - Flow Control
 - HDLC Overview

Receiver

Why Identifiers or Sequence Numbers?

Basic Sequence of Idle-RQ

Idle-RQ Retransmission 1

Idle-RQ Retransmission 2

Idle-RQ Retransmission with optional NACK

Modulo 2 Numbering for Identifiers Sequence Numbers 0 and 1

Slow !

Nearly Empty Pipe !

Agenda

- Introduction
- ARQ Techniques
 - Introduction
 - Idle RQ
 - Continuous RQ
 - Selective Acknowledgement
 - GoBackN
 - Positive Acknowledgement
 - Selective Reject
 - Sequence Numbers and Windowing
 - Bandwidth-Delay Product
 - Flow Control
 - HDLC Overview

Continuous-RQ Principle

Full Pipe !

Why we need a Retransmission Buffer?

Four packets are sent, but due to a network failure none of them arrive (or equivalently they do arrive but all the Acks are lost)

Retransmissions

Agenda

- Introduction
- ARQ Techniques
 - Introduction
 - Idle RQ
 - Continuous RQ
 - <u>Selective Acknowledgement</u>
 - GoBackN
 - Positive Acknowledgement
 - Selective Reject
 - Sequence Numbers and Windowing
 - Bandwidth-Delay Product
 - Flow Control
 - HDLC Overview

Selective Acknowledgement (Scenario 1)

ACK (N+2) triggers implicitly retransmission of I (N+1) at S

Selective Acknowledgement (Scenario 2)

ACK (N+2) triggers implicitly retransmission of I (N+1) at S

Selective Acknowledgement (Scenario 3)

Selective Acknowledgement (Scenario 4)

Selective Acknowledgement (Scenario 5)

SACK in TCP

• Application:

- New option for TCP to accommodate to long fat pipes with high BER (Bit Error Rate)
- Part of modern TCP
- Optionally, retransmissions might be sent immediately when unexpected (the next but one) ACK occurs
- Opposite idea: Cumulative ACK
Agenda

- Introduction
- ARQ Techniques
 - Introduction
 - Idle RQ
 - Continuous RQ
 - Selective Acknowledgement
 - <u>GoBackN</u>
 - Positive Acknowledgement
 - Selective Reject
 - Sequence Numbers and Windowing
 - Bandwidth-Delay Product
 - Flow Control
 - HDLC Overview

GoBackN (Scenario 1)

© 2016, D.I. Lindner / D.I. Haas

GoBackN (Scenario 2)

ACK (N+2) acknowledges all frames up to I (N+2) at S -> multiple acknowledgment

GoBackN (Scenario 3)

GoBackN (Scenario 4)

GoBackN with Sequence Numbers

GoBackN - Facts

Maintains order at receiver-buffer

- Reordering was too much time-consuming in earlier days

• Still used by

- HDLC and clones ("REJECT")
- TCP
 - Variant known as "fast retransmit"
 - Uses duplicate Acks as NACK

Agenda

- Introduction
- ARQ Techniques
 - Introduction
 - Idle RQ
 - Continuous RQ
 - Selective Acknowledgement
 - GoBackN
 - <u>Positive Acknowledgement</u>
 - Selective Reject
 - Sequence Numbers and Windowing
 - Bandwidth-Delay Product
 - Flow Control
 - HDLC Overview

Positive Acknowledgement (Scenario 1)

Positive Acknowledgement (Scenario 2)

ACK (N+2) acknowledges all frames up to I (N+2) at S -> multiple acknowledgment

Positive ACK with Sequence Numbers

Positive ACK - Facts

- Always together with cumulative ACKs
 - Any frame received is buffered
 - Receiver must be able to reorder
- Problem:
 - Only timeouts trigger retransmission

• Application:

- Early (Original) TCP

Agenda

- Introduction
- ARQ Techniques
 - Introduction
 - Idle RQ
 - Continuous RQ
 - Selective Acknowledgement
 - GoBackN
 - Positive Acknowledgement
 - <u>Selective Reject</u>
 - Sequence Numbers and Windowing
 - Bandwidth-Delay Product
 - Flow Control
 - HDLC Overview

Selective Reject (Scenario 1)

SREJ (N+1) triggers explicitly retransmission of I (N+1) at S, ACK (N+3) acknowledges all frames up to I (N+3) at S -> multiple acknowledgment

Selective Reject (Scenario 2)

ACK (N+2) acknowledges all frames up to I (N+2) at S -> multiple acknowledgment

Selective Reject (Scenario 3)

Selective Reject - Facts

- Modern modification of GoBackN
- Only those frames are retransmitted that receive a SREJ
 - Or those that time out
- Receiver must be able to reorder frames
- Application:
 - Optional for modern HDLC clones
 - SREJ control frame

Agenda

- Introduction
- ARQ Techniques
 - Introduction
 - Idle RQ
 - Continuous RQ
 - Selective Acknowledgement
 - GoBackN
 - Positive Acknowledgement
 - Selective Reject
 - Sequence Numbers and Windowing
 - Bandwidth-Delay Product
 - Flow Control
 - HDLC Overview

Sequence Number

- Identifiers are implemented by increasing numbers
- The number used in I-frames
 - Send sequence number N(S)
- The number used in ACK/NACK/SREJ-frames
 - Receive sequence number N(R)
 - Shows number of the frame which is expected next by the receiver !!!
- Register variables are necessary for protocol implementation in the finite state machine of sender and receiver
 - V(S), V(R)
 - Must be initialized (set to 0) by connection setup

GoBackN 1

GoBackN 2

GoBackN 3

Connection Initializing / Keepalive at the Beginning Reason why Nr(1) acknowledges frame I(0) !

Keepalive in Between

Piggyback Acknowledgement

Timers - Retransmission Timeout

- The value for retransmission timeouts for line protocols can be easily calculated using the following parameters
 - Bitrate
 - Maximum data frame size
 - Worst case time at receiver to generate an acknowledgment
 - Size of acknowledgment frame
- Calculation for network protocols with varying transmission delays is more complex
 - Adaptive process is necessary

Send Window and Sliding Window

- Continuous-RQ techniques would require infinite sender/receiver buffer size (also infinite number of identifiers)
 - If we do not restrict the number of unacknowledged frames

Send Window W

- Is the maximum allowed number of unacknowledged frames in the retransmission list
- Necessary sender-buffer size is W * maximum frame size
 - Also called the <u>Window Size</u>
- Handling procedure
 - Is called (Sliding) Windowing

Sliding Window Basics (1)

Event t0:

Sliding Window Basics (2)

Sliding Window Basics (3)

Windowing with Numbering Modulo W+1

GoBackN and send-window W means W+1 Identifier and numbering with modulo W+1

Worst Case Scenario with GoBackN and W=3

Agenda

- Introduction
- ARQ Techniques
 - Introduction
 - Idle RQ
 - Continuous RQ
 - Selective Acknowledgement
 - GoBackN
 - Positive Acknowledgement
 - Selective Reject
 - Sequence Numbers and Windowing
 - Bandwidth-Delay Product
 - Flow Control
 - HDLC Overview

How Large should be the Window Size?

Window size depends on

- Bandwidth (bit rate) of the communication channel
- Round-Trip-Time (RTT)
 - = 2 x (propagation + serialization) delay plus response delay of partner
- (Available buffer size transmitter/receiver)

• The optimum window size

 must be big enough so that the sender can fully utilize the channel volume which is given by the

Bandwidth-Delay Product

- Window size in Bytes >= BW × RTT
- If smaller: jumping window
- Extreme case: Idle-RQ with W=1

Full Pipe with Continuous-RQ and W = 64

Continuous-RQ (C-RQ) allows several frames to be outstanding. With 1 KByte maximum Frame Size optimum would be W = 64 !!!

Nearly Empty Pipe with Idle-RQ and W = 1

Assume 1 KByte (1024 byte) maximum frame size, then the maximal achievable rate is (1024×8) bit / 0.35 s \approx 23 kbit/s
Only Half Pipe Used with C-RQ and W = 32

With 1 KByte maximum Frame Size and W = 32 the pipe could be used only half the time !!!

Jumping Window

© 2016, D.I. Lindner / D.I. Haas

Agenda

- Introduction
- ARQ Techniques
 - Introduction
 - Idle RQ
 - Continuous RQ
 - Selective Acknowledgement
 - GoBackN
 - Positive Acknowledgement
 - Selective Reject
 - Sequence Numbers and Windowing
 - Bandwidth-Delay Product
 - Flow Control
 - HDLC Overview

Flow Control

Flow Control Possibilities

- Misuse of traditional windowing
 - Constant send window during session time
 - Receiver stops acknowledgements in case of congestion
 - Not a good approach

Separate flow control frames

Stop and Go indications

• Adaptive windowing

- Variable send window during session time
- Implicitly contains Stop and Go indication

Flow Control: Stop and Go

Flow Control: Adaptive Windowing

Window size could be

- Constant or dynamic during lifetime of a connection
 - Constant window size is used e.g. by HDLC, X.25
- If window size is dynamic
 - A start value is negotiated during connection establishment
 - Actual window size will be dynamically adjusted to an optimal value
 - Receiver continuously advertises optimal value (e.g. based on availability of free buffer memory)
 - Advertised window size = 0 -> STOP
 - Advertised window size > 0 -> GO
 - <u>Adaptive windowing (e.g used by TCP)</u>

Agenda

- Introduction
- ARQ Techniques
 - Introduction
 - Idle RQ
 - Continuous RQ
 - Selective Acknowledgement
 - GoBackN
 - Positive Acknowledgement
 - Selective Reject
 - Sequence Numbers and Windowing
 - Bandwidth-Delay Product
 - Flow Control
 - <u>HDLC Overview</u>

What is HDLC ?

- High-Level Data Link Control
- Early link layer protocol
- Based on SDLC (Synchronous-DLC, IBM)
 - Access control on half-duplex modem-lines
 - Connection-oriented or connectionless
 - Framing
 - Frame Protection

Building elements

- Synchronous transmission
- Bit-oriented line protocol using bit-stuffing
- Continuous RQ with GoBackN, piggybacked ACK
- P/F procedure for access control and check-pointing
- Flow Control based on STOP and GO

Mother of many LAN and WAN protocols

Early HDLC Example

Half-Duplex Management

Same on Multipoint Lines (1)

t=t2

Same on Multipoint Lines (2)

t=t4

HDLC Family

© 2016, D.I. Lindner / D.I. Haas

P / **F** = Poll / Final Bit

Supervisory Frames

-		-					Primary Station	Secondary Station
1	1	Code	P/F	Code			Commands	Responses
		0 0	1	0	0	0	UI	UI
		0 0		0	0	1	SNRM	
		0 0		0	1	0	DISC	RD
		0 0	1	1	0	0	UP	
		0 0	1	1	1	0		UA
		0 1	1	0	0	0	NR0	NR0
		0 1		0	0	1	NR1	NR1
		0 1		0	1	0	NR2	NR2
		0 1		0	1	1	NR3	NR3
		1 0		0	0	0	SIM	RIM
		1 0		0	0	1		FRMR
		1 1		0	0	0	SARM	DM
		1 1		0	0	1	RSET	
		1 1		0	1	0	SARME	
		1 1		0	1	1	SNRME	
		1 1		1	0	0	SABM	
		1 1		1	0	1	XID	XID
		1 1		1	1	0	SABME	

ARQ Principles in HDLC

- Default: GoBackN without dedicated NACK frame (!)
 - Receive-Sequence Number indicates next frame expected
- "Check-pointing"
 - Sender triggers (N)ACK information with P/F bit
- Optional: Reject (REJ)
 - Dedicated NACK frame
 - Can be sent at any time (no check-pointing)
- Optional: Selective Reject (SREJ)
 - Requests retransmission of single frame
- Flow control with RR and RNR

HDLC Data Link Services

HDLC can provide connection-oriented service

- Setup of connection done by U-frames
 - SNRM, SARM, SABM, UA
- I-frames and S-frame can be used only after connection setup
 - I, RR, RNR, REJ, SREJ
- Clearing of a connection done by U-frames
 - DISC, UA

HDLC can provide connectionless service

- only U-frames can be used
 - UI for data transport

Frame-Types

Connection-Oriented

1	Information
RR	Receiver Ready
REJ	Reject
RNR	Receiver Not Ready
SREJ	Selective Reject
SNRM	Set Normal Response Mode
SABM	Set Async Balanced Mode
SARM	Set Async Response Mode
SNRME	Set NRM Extended Mode
SABME	Set ABM Extended Mode
SARME	Set ARM Extended Mode
DISC	Disconnect
UA	Unnumbered Acknowledge
RSET	Reset
FRMR	Frame Reject
RD	Request Disconnect
DM	Disconnect Mode

Connection-Less

UI Unnumbered Information

Miscellaneous

XID	Exchange Identification
UP	Unnumbered Poll
SIM RIM	Set Initialization Mode Request Initialization Mode
NR0-3	Non-Reserved 0

HDLC Example: Initializing / Keepalive / First Data Frame A -> B

HDLC Example: Data Frames A->B, B->A with piggyback ACK

HDLC Example: Keepalive

HDLC Example: Flow Control

© 2016, D.I. Lindner / D.I. Haas